
EXTENDING AFSIM WITH BEHAVIORAL
EMERGENCE

THESIS

Jeffrey L. Choate, Captain, USAF

AFIT-ENG-MS-17-M-014

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-17-M-014

EXTENDING AFSIM WITH BEHAVIORAL EMERGENCE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Jeffrey L. Choate, B.S.E.E.

Captain, USAF

March 2017

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-17-M-014

EXTENDING AFSIM WITH BEHAVIORAL EMERGENCE

THESIS

Jeffrey L. Choate, B.S.E.E.
Captain, USAF

Committee Membership:

Dr. Gilbert L. Peterson
Chairman

Dr. Douglas D. Hodson
Member

Capt Jason M. Bindewald, PhD
Member

AFIT-ENG-MS-17-M-014

Abstract

The Advanced Framework for Simulation, Integration, and Modeling (AFSIM) pro-

vides a capability to evaluate mission level scenarios described in its scripting lan-

guage. The AFSIM scripting language includes multiple intelligent agent modeling

techniques, none of which explicitly provide the ability to have behaviors emerge.

Behavioral emergence occurs when a system composed of many simple behaviors

working together exhibits a complex pattern not directly attributable to the simpler

components. Without behavioral emergence an intelligent agent designer must ex-

plicitly write methods for every combination of circumstances that their agent may

encounter. A priori consideration of every possible configuration of the world state is

intractable. This problem can be solved by adding the Unified Behavior Framework

(UBF) to AFSIM which provides a means to explicitly control behavioral emergence.

This thesis creates a plug-in exposing UBF to AFSIM, extending AFSIM’s scripting

language, and demonstrating behavioral emergence via a case study of these new

behaviors.

iv

Acknowledgements

I would like to thank my wife for the support while working on this thesis and I

would like to thank Dr. Peterson and the Air Force for allowing me the opportunity

to learn about intelligent agent control structures over the past year.

Jeffrey L. Choate

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . x

List of Tables . xii

I. Introduction . 1

1.1 Problem Statement . 2
1.2 Thesis Objective . 3
1.3 Demonstrated Advancements . 3
1.4 Sponsor . 4
1.5 Contributions . 4
1.6 Results . 5
1.7 Assumptions and Terms . 7
1.8 Thesis Structure . 8

II. Intelligent Agent Architectures/Frameworks/Languages 9

2.1 Behavior Component Definition for Comparison . 9
2.2 Robot Architectures . 10

2.2.1 Subsumption . 10
2.2.2 Colony . 11
2.2.3 Motor Schema . 11
2.2.4 Saphira/ARIA Architecture . 13

2.3 Agent Controllers . 14
2.3.1 Finite State Machines . 15
2.3.2 Behavior Trees . 16
2.3.3 AFSIM’s Intelligent Agent Systems . 17
2.3.4 Unified Behavior Framework . 19

2.4 Planners and Other Behavior Languages . 20
2.4.1 A Behavior Language . 21
2.4.2 High Level Behavior Based Language . 21
2.4.3 Case Based Behavior Tool . 22
2.4.4 Unified Behavior Trees Framework for Robot

Control . 23
2.4.5 STRIPS . 24
2.4.6 Dynamic Behavior Sequencing in UBF . 25

2.5 Summary of Intelligent Agent Commands and Concepts 25

vi

Page

III. Unified Behavior Language in AFSIM . 32

3.1 Unified Behavior Framework in the Advanced
Framework for Simulation, Integration, and Modeling 32
3.1.1 UBF Class Structure . 33
3.1.2 UBF Data Flow Chart . 36

3.2 Mapping of Commands and Concepts to AFSIM
Environment . 37

3.3 Manual pages for new AFSIM commands . 43
3.3.1 Tag Documentation . 46

3.4 Summary . 69

IV. Experimental Implementation and Evaluation . 70

4.1 Behavior Tree Adapted scenario . 71
4.1.1 Translating the Individual Behaviors . 73
4.1.2 Discussion of BT translation to UBF tree . 75

4.2 Established interfaces . 77
4.3 Behavior Emergence tuning scenario . 80

4.3.1 Behavior Structures Implemented . 81
4.3.2 Comparison: UBF agent versus BT agent . 84

4.4 Emergent Behavior based Implementation . 86
4.4.1 Boids Scenario Behavior Emergence Discussion 89

4.5 Combined Scenario . 90
4.5.1 Behavior Tree Modification . 92
4.5.2 UBF Tree Modification . 93
4.5.3 Modification Comparison . 93

4.6 Summary . 94

V. Results . 96

5.1 Scenario Results Summary . 96
5.2 Coverage of other Languages and Frameworks Concepts 99
5.3 Platform Independent UBF Discussion . 102
5.4 Summary . 103

VI. Conclusions . 104

6.1 Recommendations . 104
6.2 Future Work Discussion . 104
6.3 Conclusions. 107
6.4 Significance . 108
6.5 Summary . 109

vii

Page

Appendix A. Implementation C++ Code . 110

1.1 Header Files . 110
1.1.1 InputTree.hpp . 111
1.1.2 UBFAction.hpp . 112
1.1.3 UBFActionList.hpp . 114
1.1.4 UBFArbiter.hpp . 116
1.1.5 UBFBehavior.hpp . 118

1.2 C++ Files . 122
1.2.1 UBFAction.cpp . 123
1.2.2 UBFActionList.cpp . 128
1.2.3 UBFArbiter.cpp . 137
1.2.4 UBFBehavior.cpp . 142

Appendix B. Scripts Implemented . 168

2.1 Platforms and Behaviors for Tutorial Scenario . 168
2.1.1 Striker Type with Map To Action . 169
2.1.2 Select Movement Behavior . 176
2.1.3 Pursue Target Behavior . 177
2.1.4 Go To Original Route Behavior . 180
2.1.5 Generate Targets From Tasks Behavior . 183
2.1.6 Add Weapons To Targets Behavior . 186

2.2 Platforms and Behaviors for Tuning Scenario . 187
2.2.1 Blue Aircraft . 188
2.2.2 Blue Aircraft Type . 193
2.2.3 Emergence Behavior . 195
2.2.4 Emergence Normalize Behavior . 196
2.2.5 Fly At Point Behavior . 197
2.2.6 Fly Away Behavior . 198
2.2.7 Behavior Tree Aircraft . 199
2.2.8 Behavior Tree Aircraft Type . 200
2.2.9 Behavior Tree Fly At Behavior . 202
2.2.10 Behavior Tree Fly Away Behavior . 203

2.3 Platforms and Behaviors for Swarm Scenario . 205
2.3.1 Blue Swarmers . 206
2.3.2 Blue Aircraft Swarmer Type . 208
2.3.3 Swarm Behavior . 210
2.3.4 Swarm Normalize Behavior . 211
2.3.5 Alignment Behavior . 212
2.3.6 Cohesion Behavior . 213
2.3.7 Separation Behavior . 214

2.4 Behaviors for Combined Scenario . 216
2.4.1 Fly At and Swarm BT Behavior . 217

viii

Page

2.4.2 Fly Away From Pt and Swarm BT Behavior 220
2.4.3 Combining Vectors . 224
2.4.4 Increase Vote UBF Behavior . 225
2.4.5 Dynamic Voting UBF Fly Away Behavior 226

2.5 Arbiter Scripts Used . 228
2.5.1 Fusion Vote GeoPoint Arbiter . 229
2.5.2 Copy All Actions Arbiter . 231
2.5.3 Check Track Quality Arbiter . 232
2.5.4 Assign Weapon From Target Arbiter . 234

2.6 Grammar File . 241
2.6.1 Grammar File . 242

Bibliography . 243

ix

List of Figures

Figure Page

1 Example Subsumption Behavior Structure [1]. 12

2 Notional UBF Class Structure. 34

3 AFSIM UBF Class Structure. 35

4 UBFBehavior Key. 37

5 Root behavior flow chart. 38

6 Children behavior flow chart. 39

7 Example Script of UBFArbiter. 44

8 Example Script of UBFBehavior. 45

9 UBFBehavior Key. 71

10 Initial Scenario BT to UBF . 72

11 Tutorial Behavior Tree. 72

12 Tutorial UBF Tree. 73

13 BT to UBF Scenario - UBF Agents. 76

14 BT to UBF Scenario - BT Agents. 77

15 Map To Action standard. 80

16 Behavior Tree of Fly To Goal Agent. 81

17 UBF Tree of Fly to Goal Agent. 82

18 Voting with 10 Aircraft UBF vs BT Scenario. 85

19 Swarm Agent UBF Tree. 87

20 Start of Swarm Scenario . 90

21 Progression of Swarm Scenario. 91

22 Combined BT Agent. 92

x

Figure Page

23 Combined UBF Agent. 92

24 Combined UBF Agent Tree. 95

25 End of Scenario BT to UBF. 97

26 BT Agent vs UBF agent Smoothness. 98

xi

List of Tables

Table Page

1 Behavior Definition . 10

2 Subsumption Definition . 11

3 Colony Definition . 13

4 Motor Schema Definition . 13

5 Saphira Definition . 14

6 Finite State Machine Definition . 15

7 Behavior Tree Definition . 17

8 AFSIM Behavior Definition . 18

9 Unified Behavior Framework Definition . 20

10 A Behavior Language Definition . 22

11 High Level Behavior Based Language Definition . 23

12 Computer Aided Tool Behavior Definition . 23

13 Unified Behavior Trees Framework Definition . 24

14 STRIPS Behavior Definition . 25

15 Dynamic UBF Behavior Definition . 26

16 UBF vs BT Times to Reach Goal. 86

17 Concept Implementations . 100

xii

EXTENDING AFSIM WITH BEHAVIORAL EMERGENCE

I. Introduction

Modeling and simulation (M&S) tools are used to create data for real world de-

cision making [2]. These tools allow for simulations of dangerous scenarios without

the loss of life or risk of harm to real people or assets. These tools may be run faster

than real time allowing for many strategies to be explored in order to find the most

desirable [3]. These tools provide realism by emulating the behaviors of intelligent

agents. Modeling and simulation programs are useful from their safety, realism, and

numerousness of strategies they may explore.

Modeling and simulation tools use a variety of simple logic and intelligent agent

control structures in order to create the decision sequences of their components [3].

Simple control structures are programs on infinite loops making decisions linearly; in a

broad sense intelligent agent control structures may be explained similarly. However,

intelligent agent control structures add organization and modularity to the infinite

loops. These additions are tree structures, states, behaviors, predefined code blocks,

transition functions, and many more [3, 4, 5]. Simple logic and intelligent agent

frameworks provide for the decision sequences in modeling and simulation tools.

Simple logic and intelligent agent frameworks are included in modeling and simu-

lation applications in a variety of ways. The most basic method is when an application

forces a user to make their decisions in C++, or another programming language [6, 7].

Another method provides some structure for users by limiting and generalizing the

commands they can use over a full C++ type language, called a scripting language

or scripting [3]. Graphical user interfaces can also be used to force structure on a

1

user and help them visualize the structure of the underlying language [8]. Also, many

languages may be combined or used in conjunction to provide all of their benefits at

the cost of adding complexity to the resulting scripting language. A developer needs

to balance the size and contents of the language to combat this. Ultimately, simple

logic and intelligent agent frameworks are included in modeling and simulation tools

via predetermined sets of commands, or languages.

Users of an intelligent agent framework gain the advantages of the structure but

are forced into the disadvantages of that structure [9]. Modeling and simulation tools

attempt to overcome this by including multiple intelligent agent control frameworks

[3]. However, new frameworks are continuously being created and modified. Contin-

uous assessment is needed to determine if new frameworks should be added.

1.1 Problem Statement

The Advanced Framework for Simulation, Integration, and Modeling (AFSIM)

includes intelligent agent frameworks and a variety of commands, none of which ex-

plicitly provide the capability of behavioral emergence. Behavioral emergence oc-

curs when a system composed of many simple behaviors working together exhibits a

complex pattern not directly attributable to the simpler components [10]. Without

behavioral emergence an intelligent agent designer must explicitly design behaviors

for every combination of circumstances that their agent may encounter. A priori

consideration of every possible configuration of the world state is intractable. This

problem can be solved by adding the Unified Behavior Framework (UBF) to AFSIM

which provides a means to explicitly control behavioral emergence.

2

1.2 Thesis Objective

The primary objective of this thesis is to extend the AFSIM scripting language

with the UBF. The resulting plug-in to the AFSIM executable allows for emergent

behaviors in AFSIM.

1.3 Demonstrated Advancements

The thesis objective itself has a succinct answer, being a few pages of new terms

needed that AFSIM does not currently utilize. However, extending a scripting lan-

guage with a new structure requires a comparison to other existing frameworks for

multiple reasons. The first reason is in order to include optimizations where compati-

ble. The second is to map synonymous terms in order to prevent confusion for readers

familiar with other frameworks. The third reason is to allow for reproduction of the

thesis in a different environment by displaying the concepts that are implemented by

the plug-in versus those already included in AFSIM’s scripting language.

This thesis implements the UBF action objects with a slightly different technique

than past implementations to provide an increase in platform independence. Accom-

panying this new technique are disadvantages and advantages. The advantages and

disadvantages should be examined in order to allow a reader to decide if they consider

this technique worthwhile for their own use or not.

In order to identify the advancements demonstrated through this thesis the fol-

lowing two questions will be answered:

1. How do the commands in this language cover commands from other languages

or frameworks?

2. What are the key advantages or disadvantages in implementing UBF in a plat-

form independent way appropriate to AFSIM?

3

1.4 Sponsor

This research is sponsored by the Aerospace Systems Directorate, Modeling and

Simulation Branch of the Air Force Research Laboratories (AFRL/RQQD) at Wright-

Patterson Air Force Base. AFRL/RQQD uses the Advanced Framework for Simula-

tion, Integration, and Modeling (AFSIM) as their current modeling and simulation

framework. This thesis is oriented at improving the intelligent agent control and

design capabilities of AFSIM via additions to AFSIM’s library of script commands.

1.5 Contributions

This thesis creates a dynamic link library that serves as a plug-in to AFSIM

executables. This allows the plug-in to be small and easily transferable between in-

dividuals in the AFSIM community. It also allows for the plug-in to be maintained

separately from releases of the main AFSIM software. Tying in to the AFSIM exe-

cutable provides the plug-in and its background C++ class structure to the AFSIM

script language.

The plug-in exposes the UBF class structure and its benefits to the AFSIM analyst.

This adds a designed method of implementing emergent behaviors and tuning them

[9]. This also adds an increase in flexibility by allowing an AFSIM user to choose the

agent architecture [6, 9]. Ultimately this provides AFSIM analysts the capability to

create behaviors in their intelligent agents, i.e. simulated aircraft, that they could

not or was difficult before.

The capability to create behaviors using this plug-in that were difficult before has

its own contributions. One is by reducing development time using the now built-in

capabilities. Another is by increasing maintainability, modularity, and modifiability

by replacing overly complicated solutions with smaller simpler solutions that have the

same effect. Modularity is also enhanced through the platform independence of this

4

implementation via the usage of all custom action recommendations over that of a

pre-determined action vector. Another way modularity is increased is via UBF behav-

ior’s ability to communicate with one another enabling simple mapping of behaviors

between implementations. From those contributions is the potential for AFSIM ana-

lysts to save time in creating intelligent agents and their employers to save money as

a result.

These contributions are not unique to AFSIM or modeling and simulation commu-

nity. Through this thesis, non-AFSIM specific class diagrams are provided to allow

developers insight into the necessary objects. All commands that were implemented

and exposed to AFSIM are documented. Also, required commands reused from AF-

SIM are identified. These items allow a developer of robots, video games, and any

other intelligent agent controller the tools to implement their own version of a UBF

extension to a scripting language.

1.6 Results

This thesis identifies and provides the commands necessary to expose behavioral

emergence in the Unified Behavior Framework (UBF) to AFSIM analysts. Case

studies are used to demonstrate this behavioral emergence. The first study is a

scenario acting as a proof of concept that UBF is able to replace a BT in AFSIM. It

does this by taking an AFSIM training scenario and replacing the BT with a UBF

tree. The enemy aircraft destroyed and ally targets lost for both BT and UBF tree

scenario are the same, simply showing a proof of concept that a UBF tree can replace

the Behavior Trees (BT) used in AFSIM.

The second case study compares a BT implementation and a UBF tree in order to

evaluate the effects of behavioral emergence. Each structure uses two main behaviors

that are similar, with only required structural differences. Multiple UBF agents are

5

created with different ‘vote’ values for their obstacle avoidance behavior and all agents’

time to reach a goal point is measured for comparison. These measurements show

tuning UBF behavior’s output is necessary and UBF agents can achieve a goal faster

while still meeting the objectives compared to a BT agent.

The third scenario acts as a proof of concept demonstrating UBF’s ability to create

behavioral emergence. It does this by implementing a classical behavioral emergence

technique for swarming, Boids [11], by implementing the three tenet behaviors of

Boids. Hence, a behavior each for ‘Cohesion’, ‘Separation’, and ‘Alignment’ tenets are

created and utilize the existing structure from the second case study. Five aircraft are

given the Boids inspired UBF tree and the UBF agent from scenario two is reused on a

single aircraft. During the scenario the swarm agents group up with one another, shift

the group towards the scenario two agent, and maintain the group for the remainder

of the scenario, essentially allowing a swarming behavior to emerge from the built in

features of UBF.

The fourth scenario examines the effort required to modify a BT in comparison to

a UBF tree. Scenario two and three structures are used as the concepts that are to

be combined. This scenario demonstrates the fact that maintaining and extending a

BT is proportional to the number of behaviors affected. UBF effectively combats this

proportionality of effort via its arbitration system, structure, and increased capability

of code reuse.

While those examples explore the behavioral emergence of UBF, extending AF-

SIM’s scripting language around UBF has two other concerns. The first concern is

how other frameworks’ and languages’ concepts are covered. Maximizing the concepts

that are implemented by this plug-in is accomplished in order to provide capabilities

and optimizations that the original UBF structure may not have. This plug-in does

not implement every concept identified, however Section 6.2 provides ideas for the re-

6

maining concepts. In order to show readers how the other concepts are implemented,

Section 3.2 provides a discussion of each concept and the method with which it is

implemented.

The second concern is how the platform independence of this implementation

affects users versus other UBF implementations; the platform independence referred

to here is the generic value fields of the action objects. Through the scenarios it

can be seen that this extension requires additional work initially. This is because

the action objects have to be mapped to outputs; establishing a standard mapping

for an agent can mitigate that issue. This increase in effort can be considered an

advantage because it provides the capability for a user to translate behaviors that

others create to their own tree’s input requirements. The platform independence of

this implementation initially increases workload for users while providing an increase

in flexibility.

1.7 Assumptions and Terms

Many of the terms and techniques discussed in this thesis are independent of spe-

cific programming languages. However, general Objected Oriented (OO) knowledge

is assumed when discussing the implementation of the framework into the AFSIM

code base and the language into the AFSIM script’s grammars.

Also, some terms used are for a specific purpose even if semantically similar. These

terms are ‘user’, ‘analyst’, and ‘developer’. ‘Developer’ always refers to an individual

working in the C++ code base of AFSIM; this includes working on a plug-in for the

code base, which is the method used by this thesis. ‘Analyst’ always refers to an

individual working in the script language of AFSIM. Analysts utilize the commands

and tags implemented by developers to create intelligent agents and complex mission

level scenarios. ‘User’ is a general term, referring to neither role specifically. A single

7

individual may inherit any or all of these roles but the roles are made clear because

that is a typical role distinction with AFSIM users and it distinguishes between

portions of this thesis’ effort.

Terms that start with ‘Wsf’ indicate object types provided by AFSIM. Typical

object types in this thesis are WsfTrack, WsfGeoPoint, and WsfRoute. WsfTrack

is a radar track object providing details about another agent in the environment.

The WsfGeoPoint is an object which groups together coordinates in multiple formats

as well as altitude. WsfRoute is an object consisting of a series of geographical

coordinates that an agent may be instructed to follow.

1.8 Thesis Structure

This thesis is structured as follows. This chapter introduces the overall con-

cepts and goals. Chapter II presents an overview of other intelligent frameworks and

summarizes the concepts and commands in them. Chapter III presents the class

structures, flow of control and data through UBF behaviors, a map of the concepts to

AFSIM and this implementations terms, and a manual for each of the new commands

added to AFSIM. Chapter IV is the experimental implementation and the evaluation

criteria used to demonstrate the new capabilities. Chapter V presents the findings

which resulted from the implementation of the new UBF behaviors in AFSIM. Chap-

ter VI covers the conclusions of this research. Appendix A contains the code used to

create the UBF C++ structure and implement it in AFSIM. Appendix B contains

the scripts used in the various scenarios throughout the thesis.

8

II. Intelligent Agent Architectures/Frameworks/Languages

In Chapter I, the main issue this thesis addresses is identified as the Advanced

Framework for Simulation, Integration, and Modeling (AFSIM) lacking the capa-

bility of behavioral emergence. Adding the Unified Behavior Framework (UBF) to

AFSIM can solve this issue because UBF is capable of behavioral emergence. How-

ever, AFSIM creates scenarios through its scripting language and UBF has not had

a language created around it previously. To fill this capability gap in AFSIM, its

scripting language must be extended to include and implement UBF via custom UBF

behaviors.

When extending a language to fill a capability gap, a review of related works is

necessary. The review first and foremost establishes a set of requirements and capabil-

ities that other frameworks cover. A new custom UBF behavior object should strive

to cover the capabilities of other frameworks to prevent a user from needing/using

multiple controllers to gain their multiple benefits and to prevent a user from sacrific-

ing a capability in their controller choice. To identify the commands and components

necessary, a notional behavior component definition is made for each of the intelli-

gent agent controllers that are reviewed. Finally, this chapter provides a summary

of all reviewed intelligent agent controllers to centralize and allow traceability of all

concepts and components.

2.1 Behavior Component Definition for Comparison

To succinctly present the components of the many intelligent agent controllers a

behavior component definition is used. Presenting each framework succinctly allows

readers to view the components of an intelligent agent controller at a glance. Using

a common definition for each of these controllers allows a reader’s glances to easily

9

compare the components amongst them. We chose to label our component definition

for each controller with the term “behavior” because that is the basic building block

of the many of the controllers as well as our objective framework. To be consistent,

even controllers that do not specifically utilize or call their components “behaviors”

have this definition presented for them; this is to allow a means for comparison. Thus,

a succinct behavior component definition, Table 1 assists with the understanding of

the various intelligent agent controllers and with mapping them to the extension

accomplished by this thesis.

Table 1. Behavior Definition

Let G be the behavior component of an intelligent agent.
G={S,O,C, F}
S is the signature identifying a behavior
O is the organization of the behavior structure
C are commands which act a behavior
F are flags associating information and attributes to a behavior

2.2 Robot Architectures

Here a look at intelligent agent frameworks is provided by focusing on implemen-

tation efforts of physical robots. This examination is useful because robotic imple-

mentations represent a system implementation that is comprehensive enough for a

specific platform and thus provide insight into needed functionality that looking only

at the controller portion of an agent could overlook.

2.2.1 Subsumption.

Subsumption is one of the earliest intelligent agent controllers [1, 12] which started

to provide a methodology to organize behaviors. Subsumption organizes behaviors

into a layered web of behaviors which take inputs from and provide outputs to their

10

intelligent agent and to one another; see Figure 1 for an example Subsumption struc-

ture. The outputs of the behaviors are combined by halting an output signal with

an inhibit decision, overwriting an output signal with a suppression decision, or sim-

ply being used as input to another behavior. The layered concept provides for more

important decisions, such as avoiding obstacles, to always be considered and main-

tain their effectiveness even when additional levels are added [1]. With this simple

organization of behaviors, Subsumption was the “best known departure from the

sense-plan-act” idiom [12] to a grouping of task/behavior oriented units.

The behavior component of Subsumption is defined in Table 2:

Table 2. Subsumption Definition

G={S,O,C, F}
S=Name of behavior
O=Tree, environment actuation at the root, outputs of parents used by children as
inputs or outputs are suppressed or inhibited
C=None
F=Type (Inhibit, Suppress, Behavior)

2.2.2 Colony.

Colony is a descendant of Subsumption [9] controller framework. It is slightly

different from Subsumption in that it only uses the suppression operation. This causes

the behaviors to use a “fixed-priority arbitration system” [13] as the decisions cascade

down. Thus, introducing the concept of “priority based behavior hierarchies”[9].

The behavior component of a Colony is defined in Table 3:

2.2.3 Motor Schema.

The Motor Schema Architecture emerged in the late 1980s and provided one of the

first uses of emergent behaviors [14]. It created emergent behaviors by allowing each

11

Figure 1. Example Subsumption Behavior Structure [1].

12

Table 3. Colony Definition

G={S,O,C, F}
S=Name of behavior
O=Hierarchical Tree of behaviors with parents suppressing children
C=None
F=Type (Behavior or Suppress)

behavior to fuse their output into a potential vector field. This concept applies well

to navigation, however is difficult to extend to motor tasks such as aiming a weapon,

firing a weapon, or other mutually exclusive concepts. This is because a potential

field does not lend itself well to discrete objectives; adding two aiming vectors could

result in shooting between two targets versus choosing one to be shot.

The behavior component of Motor Schema is defined in Table 4:

Table 4. Motor Schema Definition

G={S,O,C, F}
S=Name of behavior
O=List of instantiated behaviors which have their potential fields fused
C=instantiate, de-instantiate
F=None

2.2.4 Saphira/ARIA Architecture.

The focus of Saphira [9, 6, 15] is not specific to behaviors; it is an architecture, it

utilizes the planning domain, it has memory, and it has many other built in processes

like mappers and speech input modules. Saphira implements ARIA [15] (ActiveMedia

Robotics Interface for Applications) as its controller portion. ARIA defines a Local

Perceptual Space (LPS), uses the Procedural Reasoning System Lite (PRS-Lite) [15,

16], and allows for various other processes to integrate and improve it. The LPS

holds the agent’s world representation, inputs from other processes at the controller

13

level, and directly receives some inputs from sensors. These other processes extract

information from the LPS and add information back to the LPS as inputs to other

behaviors. Even though it is not specific to behaviors, Saphira provides insight into

how behaviors benefit from interfacing with systems like memory and sequencing

systems of an intelligent agent.

As the controller portion of Saphira, ARIA considers concepts for behaviors such

as (de)activation, custom combination of outputs, and limiting execution time. The

structure of behaviors in ARIA is simply a list of behaviors that execute with access

controlled by activating or deactivating behaviors to add or remove them to that

list. This list structure itself does not provide for complex behavior structures similar

to behavior trees. However, ARIA mitigates the lack of complexity of its behavior

structure by allowing for custom resolution methods that decide how to combine

behaviors that affect the same motors based on ‘priority’ and ‘strength’ assigned to

each. Finally, ARIA attempts to be reactive by imposing a time limit on the execution

of the active behavior list [15].

The behavior component of a Saphira is defined in Table 5:

Table 5. Saphira Definition

G={S,O,C, F}
S=Name
O=List, outputs combined by Resolvers based on Strength and Priority if executed
within time limit
C=Add/Remove from active list
F=Priority, Strength, Resolver, LPS (persistent memory)

2.3 Agent Controllers

This section provides a specific look at intelligent agent controllers implementa-

tions of intelligent agents. This examination is useful because if one looks at the

14

system of systems view of an intelligent framework then they could overlook the

underlying advantages or disadvantages of those structures.

2.3.1 Finite State Machines.

A Finite State Machine (FSM) based framework [4, 3] is another way to provide a

controller for an agent. This is done via a series of discrete behaviors, or states, which

transition to one another based on perceptions of the world, also called a directed

graph [3]. This results in custom transfer functions for each behavior. Similar to

behavior trees, a FSM’s computational power is limited by the number of states it

contains [3]. Adding states to a FSM becomes increasingly difficult if a user wishes

to transfer to/from any other state, thus, the size of the FSM influences the imple-

mentation effort and the modifiability.

Many people intuitively code FSMs from scratch, even if they don’t realize they

are creating FSMs [17], because they provide an easy way to conceptualize situations

for an intelligent agent. FSMs are compatible with other frameworks. FSMs can be

ad-hoc and simple via a few variables which change based on some criteria. Providing

tools and commands for FSMs provide ways for individuals to refactor their code into

modular blocks with defined structures to them which isn’t apparent in ad-hoc FSM

implementations. FSMs are another tool available to intelligent agent designers and

can be used in conjunction with other frameworks.

The behavior component of a finite state machine is defined in Table 6:

Table 6. Finite State Machine Definition

G={S,O,C, F}
S=Name
O=Directed graph of behaviors with transition functions as edges
C=None
F=Following States, Transition Function

15

2.3.2 Behavior Trees.

The Behavior Tree (BT) controller structure is a simple and powerful control

structure. Its tree structure provides the advantage of accomplishing very complex

behaviors via composition of simple behaviors [5]. The second core concept of BTs

is use of nodes to control the execution of child behaviors [3]. This type concept

provides useful tools to users in constructing BTs allowing many useful structures

to be created. The tree and type concepts are tied together with precondition code

blocks to conduct the check of a behavior being successful or not and an execution

code block to provide inputs to an agent’s motors. With those simple concepts BTs

have shown themselves to be a powerful tool in modeling behaviors of intelligent

agents [5].

While the type concept is a powerful tool for BTs it is also a limiting factor for

them. Through time, various BT implementations have increased the number of node

types available. Classically, BTs utilize ‘sequential’ and ‘selector’ type nodes [3, 5]

which operate by ‘selecting’ the first node to report success among a set of children or

by executing children in sequence until a failure. The node types have been extended

to include types ‘weighted random’, ‘parallel’, ‘priority selector’, and ‘decorator’ to

provide additional flexibility and ease of use over that of the two original types. The

‘decorator’ type changes the success or failure of a child node’s pre-condition check

in some way [18]. With the original two behavior types or the extended types, the

type concept is a strength to BTs but in all implementations users are limited to the

types defined by said implementation.

The behavior component of a BT is defined in Table 7:

16

Table 7. Behavior Tree Definition

G={S,O,C, F}
S=Name, Parameters
O=Tree, type nodes determine child execution
C=None
F=Type (Selector, Sequence, Weighted Random, Parallel, Priority Selector,
Decorator)

2.3.3 AFSIM’s Intelligent Agent Systems.

In the Advanced Framework for Simulation, Integration, and Modeling (AFSIM)

there are multiple sub-frameworks that provide analysts the capability to develop

intelligence into their agents; these all may be used independently or in concert with

each another [3]. These are the reactive integrated planning architecture (RIPR),

messaging systems, commander subordinate structures, generic programming logic,

and conceptual ways to interact with the agents. Working together these compo-

nents of AFSIM each add to the abilities and ease of which an analyst can simulate

intelligent agents.

The main component in AFSIM for creating intelligent agents is the RIPR system;

this provides the use of behavior trees (BTs), finite state machines (FSMs), a cognitive

model, a cluster manager, and a tasking system [19]. The cognitive model simulates

the limited mental abilities of a human. The cluster manager provides methods to

organize enemies into groups. The tasking system works with the command structure

in AFSIM to provide a means to specify a list of tasks or goals to agents. The FSM

and BT systems are similar to what was explained in sections 2.3.1 and 2.3.2.

The behavior tree component in AFSIM adds some additional tags over that of

generic BTs. These extra tags are mostly to make certain tasks easier and provide

explicit means for code to be executed in a given situation. For the most part,

17

these are a convenience; the update interval tag is the only necessary one. Without

that command the behavior tree would never be executed. These additional tags in

the AFSIM BT implementation provide a small means to relieve coding time for an

analyst and allow the frequency of a behavior’s execution to be controlled.

The other tools in AFSIM work with and independently of BTs and RIPR. The

messaging system provides a means for agent to communicate. The commander sub-

ordinate structures allow for decisions and responsibilities to be divided logically. The

generic programming logic allows functional programming to be used and executed at

desired times or frequencies without the need of using an entire BT or FSM. Generic

programming logic is also used within BTs “precondition” and “execute” code blocks;

i.e. if-else, for loop, or while loop statements. Finally the AFSIM allows conceptual

control of the agents; this allows an analyst to focus on mission level concepts in the

BT such as “GoToLocation(xx)” instead of the exact engine settings and exact flap

settings to accomplish this. Thus, AFSIM provides many tools above that of just

behaviors to assist in the creation of intelligent agents and they can all be used in

concert.

The behavior component of an AFSIM behavior is defined in Table 8:

Table 8. AFSIM Behavior Definition

G={S,O,C, F}
S=Name
O=Tree, optionally with nested FSM or nested inside an FSM or another BT
C=none
F= Type(Sequence, Selector, Parallel, Weighted Random, Priority Selector,
node), on message, on init, on new execute, on new fail, run selection,
update interval, priority, and make selection, precondition, execute, behaviortree

18

2.3.4 Unified Behavior Framework.

The Unified Behavior Framework (UBF) is an intelligent agent controller which

implements capabilities in some interesting ways. Its structure allows for the emer-

gence of behaviors. The definition of the framework allows for dynamic swapping of

behaviors. Finally the features of its structure allow for platform independence of

behaviors [9].

It enables emergent behavior by flipping a behavior tree’s execution of actions

upside down; it is tree structure, however the actions are applied by the root instead

of the leaf nodes. Hence, action recommendations flow up from leaf nodes to the root.

This requires resolution methods to decide how to combine or prioritize one action

recommendation over another; which are called “Arbiters” in UBF. These resolution

methods are free to be generic or specific to the action recommendation objects that

are received; this is in contrast to Subsumption where behaviors communicate by

specific inputs, suppression, or inhibition decisions. With the use of action recom-

mendations, arbiters, and actuation occurring in the root of a tree, UBF enables

behavior emergence.

The concept of dynamic swapping of behaviors is useful for various reasons but is

not always present in UBF implementations. It allows a behavior structure to remain

small and hence take less processing time. It allows a behavior structure to interact

with other components of an intelligent agent such as planners or sequencers. This

concept can be extended to many of the other intelligent agent controllers examined.

However, this feature is not always implemented in UBF implementations or other

controllers because it is a large endeavor focusing largely on the design of the structure.

For UBF this concept has been addressed by defining various tags for a behavior

defining its characteristics; this is summarized in Section 2.4.6.

Platform independence in UBF is another concept which is not always imple-

19

mented. This can be seen by statically structured action recommendations scoped

at the platform implemented on [6, 20, 7]. The original definition of UBF presumes

platform independence of behaviors via manual mapping of action recommendations

to motors in the root [9] and making no assumption of the contents of the action

recommendation object. Thus, the action recommendation objects are key to the

platform independence of UBF.

UBF also includes an optimization technique to identify behaviors as a leaf or a

composite. This technique optimizes the execution of a UBF tree by allowing a leaf

behavior to only execute once but its output be re-used at multiple places in the tree

[20]. Thus, the optimization is not solely from being a leaf vs composite, but from

having a reusable set of action recommendations. This can save needed processor

cycles on physical implementations.

The dynamic sequencing aspect of UBF behaviors is examined in Section 2.4.6

and the behavior component of a UBF behavior is defined in Table 9:

Table 9. Unified Behavior Framework Definition

G={S,O,C, F}
S=Name
O=Tree, actions handled by parent arbiter
C=Add/Remove Child node
F=Arbiter, Children, Priority, Type: Leaf or Composite

2.4 Planners and Other Behavior Languages

This section examines other tools that have been created to work with behavior

based intelligent agent controllers. This examination is useful because it shows the

various methods an underlying behavior based intelligent agent controller interfaces

with designers and other software components.

20

2.4.1 A Behavior Language.

A Behavior Language (ABL) [21] defines various terms into a scripting language

for a dynamic version of a behavior tree. ABL adds a level of dynamic execution to

a behavior tree by allowing behaviors with the same name be defined and signature

matching based on an integer, a behaviors specificity, as well as a parameter list.

ABL also provides the ability for behaviors to remove or add behaviors to the active

behavior tree dynamically at runtime. With the adding/removing of behaviors and

an innovative signature matching technique ABL creates a new version of a behavior

tree.

In addition to generic BTs ABL adds a few other tags for various functionality

not seen in other controllers. First it differentiates behaviors that act on the envi-

ronment, Act, versus behaviors that only calculate something for another behavior

to use, a Mental Act; this is merely a convenient way to label behaviors. ABL’s

provides commands for creating teams of agents and synchronizing actions between

those agents. Finally, ABL provides commands similar reminiscent of a finite state

machine which cause behaviors to remove themselves from the active behavior tree

based on certain conditions or to never remove themselves from the active tree even

if they succeed. These other tags provide explicit teaming, differentiation between

environmental actions and mental actions, and commands to modify the behavior

tree at runtime.

The behavior component of a ABL behavior is defined in Table 10:

2.4.2 High Level Behavior Based Language.

Vu, et al. [4] at Carnegie Mellon University developed the High Level Behavior

based Language (HLBL) in an effort to create a language to share common behaviors

across platforms and allow reuse. HLBL is structured as a hierarchical FSM; first

21

Table 10. A Behavior Language Definition

G={S,O,C, F}
S=Name, Parameters
O=Tree with Parameter matching
C=Add/Remove (not explicitly defined)
F=Pre−Condition, Type (Sequential, Parallel, Act, Mental Act), Sub Goal (adds
child behavior), Context Condition (exit condition), Synchronize, Joint, Team,
Persistent (always retry if fail/succeed), Priority, Specificity

a FSM is constructed and within each behavior (or state) there are children which

inherit the parent’s exit conditions. This gives a degree of added modularity over

generic FSMs. Similar to generic FSMs this approach still suffers from the fact that

each behavior needs to handle all possible behavior transitions and each needs to

handle all actions (turret aiming, lights on/off, directional control, speed, etc.) that

are possible.

HLBL defines various flags that provide convenience over a generic FSM construct.

Two of these flags are initialize and finalize; they call specific code only at the start

and only at the end, respectively, of a behavior. Various other flags are used to identify

the resolution method needed, lists of following or children behaviors, conditions that

must be checked, when condition checks are used at the start or exit of a behavior,

and that a function is a resolution function. Finally, a behavior in HLBL has an

Action flag representing the actual motor settings it may set; however this is optional

if the behavior has children. This allows for generic behavior objects to be used as

organizational units. Thus, all these tags constitute a language definition for FSMs.

The behavior component of a HLBL behavior is defined in Table 11:

2.4.3 Case Based Behavior Tool.

The Computer-Aided Software (CASE) based tool for behavior generation has

a couple of interesting features above that of typical finite state machines (FSMs)

22

Table 11. High Level Behavior Based Language Definition

G={S,O,C, F}
S=Name
O=Hierarchical Finite State Machine with transitions handled by explicitly defined
resolution methods
C=None
F=startswhen, endswhen, children, following, ChildResolution,
FollowingResolution, initialize, finalize, resolution, cond, choice, Action

[8]. First it uses a graphical user interface in order to build its controller. It uses

a hierarchical FSM which allows behaviors to simply be containers for one another.

This tool also uses a shorthand notation for declaring the types of nodes, method

children nodes are selected, and the repeatability of each node. With these features

the CASE tool displays behaviors simply and succinctly.

The behavior component of a CASE tool behavior is defined in Table 12:

Table 12. Computer Aided Tool Behavior Definition

G={S,O,C, F}
S=Name
O=Finite State Machine with execution based on node type
C=None
F=|| (AND node), | (OR node), . (sequential node), ∗ (repeat 0 or more), + (repeat
at least once), ˜

2.4.4 Unified Behavior Trees Framework for Robot Control.

The Unified Behavior Trees Framework (UBTF) for Robot Control by Marzinotto

et al. [22] extends generic behavior tree (BT) frameworks with a couple new node

types to support interesting features. One of the features increases the efficiency

of a BT by remembering the last child to execute. This leads to UBTF’s modified

precondition check called a ‘current state space configuration check’ and the option of

returning ‘running’ instead of simply success or failure from a behavior. UBTF also

23

added some nodes which allow checking of a condition without taking an action and

a node to coordinate between team members. UBTF’s nodes add to the efficiency

and organization options of generic behavior trees.

The behavior component of a UBTF behavior is defined in Table 13:

Table 13. Unified Behavior Trees Framework Definition

G={S,O,C, F}
S=Name
O=Tree structure executed based on parent type
C=None
F=Type (Decorator, Decorator˜, Sequential, Condition, Node * Extended, Action,
Selector, Parallel)

2.4.5 STRIPS.

The STanford Research Institute Problem Solver (STRIPS) is a planning pro-

gram which solves problems by finding a sequence of needed tasks [23, 24]. To do

this STRIPS requires task objects to indicate their requirements to be used and the

expected effects of using them. This uses first order predicate calculus to solve the

problem. Implementing these plans requires a custom sequencer be designed, scoped

towards both the framework used as well as the specific implementation, i.e. two

behavior trees may only effectively implement dynamic behaviors in certain locations

and they may be different locations. Thus, planning programs like STRIPS are com-

patible with intelligent agent controllers if the building blocks of the controller have

the necessary information and have custom sequencing accomplished for them.

In order for a behavior component of an intelligent agent to work with STRIPS

it would need to be defined with at least the behavior component definition in Table

14:

24

Table 14. STRIPS Behavior Definition

G={S,O,C, F}
S=Name, Parameters, Effects
O=Requires Custom Sequencer based on framework used
C=Frameworks need to activate/de-activate or add/remove behaviors
F=Effects (including child effects)

2.4.6 Dynamic Behavior Sequencing in UBF.

In a thesis by Duffy [24] work was done to identify the needed components of a UBF

behavior for compatibility with a dynamic sequencer. The first component identified

is the “initial conditions” which represent the conditions necessary to activate the

behavior. The next component is the “post conditions” which identify the effects this

behavior adds and removes from the world state. Another component is the “required

data” which identifies the sensors or processed data needed for a behavior. The

“action settings” component identifies the motors affected in order to allow sequencers

to find behaviors by the motors they affect. The “goal achieved” component is used

to identify an abstract high level goal a sequencer may look for. Finally, the “vote”

component is used to allow a sequencer visibility into the effectiveness of a behavior’s

“action settings” versus another behavior’s. With all of these components a sequencer

is given in-depth visibility into a behavior all the requirements a behavior may have

and the ways it can affect an environment.

The behavior components of a dynamically sequence-able Duffy behavior is defined

in Table 15:

2.5 Summary of Intelligent Agent Commands and Concepts

This section summarizes the commands and concepts of the preceding sections

in an effort to reduce the number of synonymous terms, discuss the advantages each

25

Table 15. Dynamic UBF Behavior Definition

G={S,O,C, F}
S=Name
O=Arbitrated tree structure
C=An ability to add/remove from the tree
F=Lists of initial conditions, Add Post Conditions, Delete Post Conditions,
Required Data, Action Setting, Goal Achieved, vote

provides, and start to provide a map from other intelligent agent controllers.

1. Pre Conditions: A pre condition code block checks the applicability of a be-

havior. For behavior trees, this tool provides a small amount of modularity

to a user; in many cases it is absorbed into a single code block with action

generation. In hybrid finite state machines (FSM) a pre condition code block

conceptually still checks the applicability of a state or behavior; however, this

tool allows transfers between states to reuse the logic without every other state

knowing the specifics of the receiving state.

2. Priority: Giving behaviors priorities allows for selective execution or selection

of behaviors or of a behavior’s set of actions. This increases the control a

user has when developing a behavior selection or action selection mechanism by

providing them a qualitative criteria to work with. Thus, allowing for generic

selection mechanisms to be made which do not require specific knowledge of

a behavior or action. This reduces the amount of code a user would need to

create and increases the potential ways behaviors can be called.

3. Votes: A vote for the action recommendation of a behavior gives criteria, i.e.

a weight, by which to merge or select actions. This is slightly different from a

behaviors priority which is used to select and identify the behavior which may

generate the actions. This also provides a mechanism for generic selection of

26

action recommendations regardless of their content.

4. Name: Each behavior having a name allows for reuse of the behavior and con-

struction of behavior structures.

5. Expected Effects: A behavior having lists of effects it may add or remove from

the environment provides tools for dynamic behavior structure manipulation

and planner type code to use. Allowing for planners or dynamic manipulation

of a behavior structure can enable the structure to stay both small enough to

be reactive and applicable to an intelligent agent’s current need.

6. Required Data: A list of the sensors and data components required by a be-

havior provides additional criteria to a sequencer or planner allowing applicable

behavior selection.

7. Action Settings: A list of the motors this behavior affects can provide additional

criteria to a sequencer or planner allowing further applicable behavior selection.

8. Initial Conditions: These are a list of environmental conditions that may indi-

cate a behavior is applicable to. This is another tool for a potential sequencer

or planner program to use in finding the an applicable behavior.

9. Goal Achieved: This field can identify to a sequencer or planner the abstract

goal of a behavior.

10. Behavior Library: A single repository of behaviors provides the capability to

dynamically modify a structure and an efficient method to search for behaviors.

11. Parameters: Parameter lists allow for single blocks of code to be used generically.

This provides code flexibility, reuse, and can even reduce the risk of errors when

a user re-accomplishes the same task multiple times.

27

12. Action versus Mental Act: Providing an identifier to behaviors indicating if they

act on the environment versus only providing calculations for other processes

to use is a way to classify behavior types.

13. Global and Persistent Memory: Many behavior implementations or structures

do not explicitly define memory as a component; such as ABL and SAPHIRA.

Other implementations likely have global and/or persistent memory as a by

product of their implementation language (C, C++, Java, C#, etc) and not

as a custom grammar laid atop one of those languages. The ability to use

memory accessible by other aspects of an intelligent agent (global) allows for

communication between behaviors or other processes. Persistent memory in

a single behavior allows tracking and more informed decisions to be made on

subsequent executions. Ultimately memory unlocks a user’s potential to create

what ever they can imagine.

14. Action Recommendations: These come in two forms which both have merit;

conceptual and motor based. Motor based recommendations are implementa-

tion specific rigid objects that contain sub-fields for each motor’s setting. This

allows for a user to implement a behavior structure without needing to map

recommendations to actual outputs; a developer must have already done this

for the rigid action object. Conceptual action recommendation objects force the

user to map the concept to motor outputs; i.e. “go left” maps to turn activate

left motor for 2 seconds. Conceptual action recommendations increase the work

for an analyst, but reduce their reliance on developers when new motor outputs

are created. These also allow for generic behavior structures to be created and

the only effort an analyst needs to expend is mapping and tuning the action

recommendations to motors of the agent it is implemented on.

28

15. Sub Goals and Children: Giving behaviors sub behaviors, children behaviors,

or sub goals increases code reuse, increases modularity, increases flexibility, and

allows more detailed planning.

16. Reflective Access: A behavior with reflective access is able to modify it’s list of

children. This allows a behavior to act as a planning or sequencing element and

can keep itself lean, reactive, and relevant. With other elements like expected

effects lists and a library of behaviors this concept allows behavior structures

to be dynamic.

17. Arbitration Methods: Arbiter and resolution methods explicitly allow for emer-

gent behaviors by giving the user control over how actions are chosen and com-

bined. Behaviors may also use reflective access to change the arbiter method

used allowing for a change in overall behavior at run time.

18. Signature Matching: This concept is typical in programming languages; by

matching parameter lists and method names. Signature matching is another

tool that assists with code reuse. ABL extended this to include matching based

on a pre condition block passing. This concept allows for multiple behaviors

with identical parameters and names to be created; essentially making each

method call a list of potential methods.

19. Previous Child: Tracking the last child a behavior executed on the previous

cycle can increase a framework’s efficiency by preventing applicability checks of

all the children before it.

20. Exit Conditions: This is a concept in FSMs which allows them to exit when

certain conditions are met. This is a needed tool for state machine structures

because their cycles always start in the state of the previous cycle.

29

21. On Entry: This block of code is a convenience for users to execute the first time

a behavior is executed.

22. On Exit: This block of code is a convenience for users to execute the first time

a behavior doesn’t execute when it did execute the previous cycle.

23. Initialization: This block of code is used to initialize variables for a behavior to

use. This is a convenient method for users to explicitly set default values and

initialize variables.

24. Messaging interface: This type of interface allows external entities to trigger

code in a behavior. For AFSIM behaviors, this is a convenient way to separate

logic triggered by a message from the execution logic.

25. Synchronous Flags: These flags are used to track who an agent is on a team with

and which behaviors need to synchronize between the agents. This alleviates

explicit work by users to implement a teaming system. When implemented

on an agent a developer would need to map these flags to outputs and map

communication inputs to these flags.

26. Frequency: Giving a behavior or behavior structure a frequency allows for tun-

able efficiency and tunable responsiveness of an agent. This can be useful even in

discrete event simulations because those simulations can take hours to compile

and can use frequency to only periodically accomplish some complex calculation.

27. Activate/Deactivate: The ability to activate and deactivate behaviors is a re-

flective tool used to keep behavior structures lean, responsive, and relevant.

28. Execution Time Limit: In SAPHIRA the behavior structure is limited to 100ms

in order to maintain the appearance of reactivity.

30

29. Leaf vs Composite node types: This allows optimizing the execution of behavior

structures by storing leaf behavior’s outputs for reuse throughout a structure.

31

III. Unified Behavior Language in AFSIM

Behavioral emergence in the Advanced Framework for Simulation, Integration,

and Modeling (AFSIM) requires a different agent modeling capability. To enable this

capability the AFSIM script language needs to be enhanced with a new framework

in order to access and use it. The Unified Behavior Framework (UBF) is able to

accomplish this goal. To show the methodology used to create a behavior language,

which provides the capability of emergent behaviors in AFSIM, requires multiple

components.

The first component is an understanding of the implementation of UBF in AFSIM.

The next component is a map of the concepts seen in other intelligent agent controllers

to their implementation, or lack thereof, in AFSIM and the UBF structure added to

AFSIM. The final component required is the syntax definition for each term added to

AFSIM. With an understanding of how UBF was implemented in AFSIM, a mapping

of concepts in the intelligent agent community to AFSIM and the new behavior plug-

in, and the required syntax for all added components, a reader has the tools required

in order to recreate this script language extension in their coding environment of

choice.

3.1 Unified Behavior Framework in the Advanced Framework for Simu-

lation, Integration, and Modeling

In order to understand the implementation there are two main areas to investi-

gate. First the underlying class structure is examined, how the AFSIM code interacts

with this class structure, and how this implementation relates to the original concep-

tual class structure for UBF. Next the flow control versus the flow of information is

examined. With these two components a reader can create the underlying structure

32

of UBF as it was implemented in this thesis.

3.1.1 UBF Class Structure.

The first step to understand how UBF is implemented in AFSIM is to understand

the underlying class structure versus the notional class structure. Figure 3 utilizes

the Unified Modeling Language (UML) class diagram [25] standard to display the

structure of UBF implemented in AFSIM; these classes are C++. This is compiled

into a dynamic link library (DLL) and used as a plug-in, that can parse and compile

the script into a replay file; this plug-in is used by AFSIM executables.

Figure 3 displays two occurrences of multiple inheritance where UBFBehaviors

and UBFArbiters both inherit from WsfProcessor and UBFActionList. Inheriting

from WsfProcessor allows UBFBehavior and UBFArbiter objects to register them-

selves with a WsfProcessor factory, a library of WsfProcessors, and allows the top

level UBFBehavior to be called upon as if it were a WsfProcessor. Registering with

the WsfProcessor factory allows dynamic and runtime referencing of UBFBehaviors

and UBFArbiters. Inheriting from UBFActionList provides a vector of UBFAction

objects and the necessary methods to access the UBFActions in a UBFBehavior or

UBFArbiter. Thus, this multiple inheritance allows runtime access to UBFBehaviors

that are created and similar functionality for working with the UBFAction objects.

The class diagram in Figure 3 utilizes some functions that may not be straight

forward to non-AFSIM developers. The ProcessInput function instantiates an in-

stance of the class, adds that instance to the WsfProcessor factory, and parses the

input stream to store or set values in that object. The Initialize function associates

all of the pointer objects; here stored values from the ProcessInput function call are

used to find and store references to objects throughout the application and build the

UBF tree of references to other UBFBehaviors and UBFArbiters. The mExecute(...)

33

function is called by the AFSIM application if the UBFBehavior is the root or by the

parent UBFBehavior and controls executing script code blocks defined by the user.

Within those three methods the entire construction and execution of UBF is possible.

The new class diagram in Figure 3 has three large differences versus the original

notional class diagram for UBF seen Figure 2. The first is the inclusion of two classes

for action objects. The original UBF definition omits this because the definition of

an action object is dependent on the application environment; however, this thesis

proposes generic action objects be used to enable greater reuse and platform inde-

pendence. Hence, why those classes are included in Figure 3. The UBFActionList

class was created as a convenience and to use the programming practice of inheri-

tance for code reuse. The methods inside UBFActionList provide a variety of ways

for an analyst to safely and conveniently access the actions stored in a UBFActionList

object.

2/1/2017 notionalUBF2

https://www.gliffy.com/go/html5/11770123 1/1

Behavior
genAction(State):Acti

on

Composite
genAction (State):Action

add(Behavior)
remove(Behavior)
setArbiter(Arbiter)

Arbiter
evaluate (ActionList):Action

1

Leaf
genAction (State):Action

2...*

Figure 2. Notional UBF Class Structure.

34

U
BF

Ac
tio
nL
is
t

ite
ra
to
rF
or
N
ex
tM
et
ho
ds
:i
nt

Ad
d_
Ac
tio
n(
U
BF

Ac
tio
n*

ne
w
Ac
tio
n)
:v
irt
ua
l

G
et
_A

ct
io
ns
_B

y_
Ex
ac
t_
N
am

e(
st
rin
g)
:U

BF
Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_B

y_
pa
rti
al
_N

am
e(
st
d:
:s
tri
ng

by
N
am

e)
:U

BF
Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_B

y_
Ex
ac
t_
Pr
io
rit
y(
in
tb
yP
rio
rit
y)
:U

BF
Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_B

y_
M
in
_P

rio
rit
y(
in
tb
yP
rio
rit
y)
:U

BF
Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_b
y_
ty
pe
_S

tri
ng
()
:U

BF
Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_b
y_
ty
pe
_W

sf
R
ou
te
():

U
BF

Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_b
y_
ty
pe
_I
nt
():

U
BF

Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_b
y_
ty
pe
_D

ou
bl
e(
):
U
BF

Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_b
y_
ty
pe
_W

sf
G
eo
Po

in
t()
:U

BF
Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_b
y_
ty
pe
_W

sf
Tr
ac
k(
):
U
BF

Ac
tio
nL
is
t*

G
et
_A

ct
io
ns
_U

ni
qu
e_
To
p_
Pr
io
rit
ie
s(
):
U
BF

Ac
tio
nL
is
t*

Fi
rs
t()
:U

BF
Ac
tio
n*

La
st
():
U
BF

Ac
tio
n*

N
ex
t()
:U

BF
Ac
tio
n*

By
In
de
x(
in
ti
):
U
BF

Ac
tio
n*

N
ex
t_
R
es
ta
rt(
)

Si
ze
():

in
t

Er
as
e_
Ac
tio
n_
By
_N

am
e(
st
d:
:s
tri
ng

oN
am

e)

W
sf
Pr
oc
es
so
r

U
BF

Be
ha
vi
or

st
at
ic
U
BF

Be
ha
vi
or
Pt
r:
st
at
ic
U
BF

Be
ha
vi
or
*

ex
ec
ut
eF
re
qu
en
cy
:d
ou
bl
e

la
st
Ti
m
eE

xe
cu
te
d:
do
ub
le

m
R
eq
ui
re
dD

at
a:
ve
ct
or
<s
tri
ng
>

m
Po

st
_C

on
di
tio
ns
_A

dd
:v
ec
to
r<
st
rin
g>

m
Po

st
_C

on
di
tio
ns
_R

em
ov
e:
ve
ct
or
<s
tri
ng
>

m
M
ap
To
Ac
tio
nS

cr
ip
tP
tr:
U
tS
cr
ip
t*

m
Ex
ec
ut
eS

cr
ip
tP
tr:
U
tS
cr
ip
t*

m
Pr
eC

on
di
tio
nS

cr
ip
tP
tr:
U
tS
cr
ip
t*

w
ei
gh
t:
do
ub
le

Pr
oc
es
sI
np
ut
(In
pu
ts
tre
am

):
bo
ol

In
iti
al
iz
e(
tim

e)
:b
oo
l

m
Ex
ec
ut
e(

in
td
ep
th
):
ve
ct
or
<U

BF
Ac
tio
n*
>

Ad
d_
Be

ha
vi
or
(s
tri
ng
):
bo
ol

R
em

ov
e_
Be

ha
vi
or
(s
tri
ng
):
bo
ol

U
BF

Ar
bi
te
r

U
tS
cr
ip
t*

m
Ex
ec
ut
eS

cr
ip
tP
tr

ov
er
rid
e
vo
id
Ad

d_
Ac
tio
n(
U
BF

Ac
tio
n*

ne
w
Ac
tio
n)

bo
ol
Pr
oc
es
sI
np
ut
(..
.)

st
d:
:v
ec
to
r<
U
BF

Ac
tio
n*
>

Pr
oc
es
s(
st
d:
:v
ec
to
r<
U
BF

Ac
tio
n*
>
in
pu
tA
ct
io
ns
)

U
BF

Ac
tio
n

ac
tio
nN

am
e:
st
rin
g

pr
io
rit
y:
do
ub
le

vo
te
:d
ou
bl
e

w
ei
gh
t:
do
ub
le

va
lu
eS

tri
ng
:s
tri
ng

va
lu
eI
nt
:i
nt

va
lu
eD

ou
bl
e:
do
ub
le

va
lu
eP

oi
nt
:W

sf
G
eo
Po

in
t

va
lu
eT
ra
ck
:W

sf
Tr
ac
k

va
lu
eR

ou
te
:W

sf
R
ou
te

0.
.*

C
hi
ld
re
n

0.
.*

ne
w
Ac
tio
ns

0.
.*Ac
tio
ns

0,
1

Ar
bi
te
r

F
ig

u
re

3
.

A
F

S
IM

U
B

F
C

la
ss

S
tr

u
c
tu

re
.

35

The other large differences versus the original notional class diagram are the lack

of a composite or leaf behavior distinction and the lack of a “State” variable being

passed. The lack of a composite versus leaf behavior distinction is simplified into a

generic behavior class because all behaviors may be composites; gaining this simplic-

ity does cause a loss of potential optimization from automatically reusing behavior

outputs if a behavior is reused in a single tree. A “State” variable is omitted in the

new implementation because code blocks are automatically given access to a “PLAT-

FORM” variable. This variable provides analysts the ability to view the state of their

agent and its sensors. Being forced to use a “state” variable limits users to the sensors

and components that exist at the time that “state” variable is developed. With the

explanation of these three differences a user should understand the necessity for the

differences and how similar the two are.

3.1.2 UBF Data Flow Chart.

The second step in understanding the UBF implementation in AFSIM is to under-

stand the flow of data within a UBFBehavior and a UBF tree. This encompasses the

order code segments are executed, the path action recommendations take through a

behavior, and the effect of omitting code blocks. In order to do this Figure 4 presents

the standard shapes and colors used for the various code blocks within a UBFBehav-

ior. Using those standards, Figures 5 and 6 display the flow of data accompanied by a

discussion summarizing them. With the understanding from these flow charts a user

can better understand the avenues for inter-behavior communication and expose the

power of UBF.

In the broadest sense all of the components presented are optional. This means

that if any or all components are omitted the UBF tree will still compile; the user

may be presented with warnings in the console output and the tree may not function

36

Map To Action

Pre-Conditions

Children

Execute

Key

Thread of execution

Flow of Actions

Arbiter

Figure 4. UBFBehavior Key.

as expected. The only code block that is conceptually required is the Map To Action

code block since that is where the action recommendations are supposed to affect

the environment; without the Map To Action code block a UBF tree should not

affect anything. Omitting the Pre Conditions code block results in the thread of

execution following the True path. Omitting the Arbiter code block results in any

action recommendations passing to the Map To Action code block or parent behavior

un-affected; if an Arbiter is included an action recommendation must be explicitly

passed forward or it is discarded. Omitting the Execute code block simply passes

the thread of control and any action recommendations from the children forward;

including an Execute code block does not explicitly stop action recommendations

from children passing forward, but the Execute block does have access to modify or

delete those recommendations if desired.

3.2 Mapping of Commands and Concepts to AFSIM Environment

This subsection maps the concepts explored in Section 2.5 to the AFSIM envi-

ronment and the additions made to it. Commands, also known as tags, in bold are

native to AFSIM and commands underlined were added to AFSIM as part of this the-

sis effort. The AFSIM environment can run in both discrete event mode (simulation

37

Start

Behavior Name

Pre-Conditions

Map To Action

Children

True False

Arbiter

Execute

Figure 5. Root behavior flow chart.

is compiled into a replay file for later recall) and as a real time simulation; this imple-

mentation is designed towards the discrete event mode, however Section 6.2 contains

comments on what code should be updated for real time use. This implementation

utilizes UBF as the basis for the structure being built.

1. Pre Conditions: A pre condition code tag is used to implement this. While

in BTs it is not strictly necessary, in this UBF implementation it provides an

efficiency increase via a failed pre condition code block that prevents children

behaviors from executing and the behavior itself from executing.

2. Priority: A priority field is implemented as a component of each action object.

Arbiter object use this field to select sets of action objects from behaviors, this

38

...Children...

Parent

Child 1

Pre-Conditions

C
h
il
d
re

n

True
False

Arbiter

Execute

Child n

Pre-Conditions

C
h
il
d
re

n

True
False

Arbiter

Execute

Figure 6. Children behavior flow chart.

implementation uses smaller non-negative numbers for a ‘higher’ vote.

3. Votes: A vote field is implemented as a component of each action object. Arbiter

objects use this field to select between and how to merge action objects, this

implementation uses larger numbers for a ‘higher’ vote.

4. Name: The name of each behavior is built into AFSIM because the AFSIM pro-

cessors have names. This is used to go through the library of AFSIM processors

and retrieve by name the UBFBehaviors and UBFArbiters desired.

5. Expected Effects: This implementation has two tags Add Post Condition and

Remove Post Condition that add strings to a vector, a list, in every UBFBe-

havior;. Commands are implemented to access the list as well.

39

6. Required Data: This implementation has the tag Required Data that adds a

string to a list that is part of every UBFBehavior indicating that sensors and

data may be required by that behavior; various commands are implemented to

access the list as well.

7. Action Settings: An Action Setting tag is used to add strings to a list indicating

which motors a behavior affects; various commands are implemented to access

the list as well.

8. Initial Conditions: An Initial Condition tag is used to add strings to a list

indicating which conditions are required by a behavior to activate; various com-

mands are implemented to access the list as well.

9. Goal Achieved: A Goal Achieved is a string subfield indicating the overall ab-

stract goal a behavior is applicable towards; various commands are implemented

to access the list as well.

10. Behavior Library: AFSIM has built in factories, libraries, for the components

of agents. The UBFBehavior and UBFArbiter classes inherit from the WsfPro-

cessor class making them compatible with the WsfProcessor factory. Thus, the

processor factory is a behavior library. The processor type is used because that

type is used for “thought process” like activities.

11. Parameters: This is not explicitly implemented; each behavior only has a name

with no list of parameters after it. A workaround to this is via the communica-

tion between behaviors the UBF structure allows. When constructing the UBF

tree, parameters can be the children of a behavior communicating the parame-

ter information in the form of action objects. Section 6.2 talks about a way to

extend this implementation to allow for parameter passing close to what a pro-

grammer may see as command line arguments in the C programming language.

40

12. Action versus Mental Act: This differentiation is not made in this implementa-

tion. This is because only the root of the UBF tree actuates on the environment

and classifying this is not desired for this implementation because it adds to the

complexity without notable benefits.

13. Global and Persistent Memory: These concepts are accomplished through built

in features of AFSIM. Persistent memory for each UBFBehavior is accomplished

via usage of AFSIM’s script variables tags. These variables are usable in all

code blocks within a behavior but are not accessible by children behaviors or by

any external code. These variables retain their value between successive calls to

a behavior. A way that AFSIM implements global variables is by the use of the

Aux Data tag. This tag attaches to components in AFSIM and is accessible

between components.

14. Action Recommendations: This implementation’s action objects are conceptual.

This results in a need for the root behavior to have an analyst implement a

Map To Action code block. Each action object has name, priority, vote, integer

value, string value, and double value fields. These fields are usable at the

discretion of the UBF tree designer. Each UBFBehavior is not limited on the

number of action recommendation it may produce.

15. Sub Goals and Children: Child behaviors are able to be added to each behavior

by the Children tag. This tag starts a list of behavior names that are added

to the behavior in which the tag is contained. Each name is preceded by a

Behavior tag indicating a name follows that tag. Also, the Children tag can

be used within itself to construct an entire tree of UBFBehaviors.

16. Reflective Access: This is accomplished by Add Behavior and Remove Behavior

commands being added to the script language for use in a UBFBehavior’s code

41

blocks. This is the extent of the dynamic access provided in this implementation.

17. Arbitration Methods: The Arbiter tag is used to indicate the name of an arbiter

assigned to a behavior. There were no commands created to dynamically change

the arbiter used on a behavior; Section 6.2 proposes such commands. Creating

an UBFArbiter is done similar to defining a UBFBehavior, as a processor of

type UBFArbiter with an execute code block within it.

18. Signature Matching: The signature of a behavior in this implementation is only

based on the name. Section 6.2 suggests possible ways to implement parameters

into the signature matching.

19. Previous Child: This is not implemented because all children in a UBF tree

conceptually execute every iteration.

20. Exit Conditions: Since this is a concept for FSMs it is not applicable to the

UBF tree structure.

21. On Entry: This is not implemented because it is a convenience and does not

align with UBF trees executing every behavior every iteration.

22. On Exit: This is not implemented because it is a convenience and does not

align with UBF trees executing every behavior every iteration.

23. Init: This is accomplished by script variables tag in a UBFBehavior or UB-

FArbiter where a user may define variables with initial values that are usable

throughout each respectively.

24. Messaging interface: This is not implemented since it is a convenience for users.

A user may do this themselves if desired.

42

25. Synchronous Flags: The concept of teaming is not implemented explicitly be-

cause AFSIM provides the side tag indicating a team the platform is on and

includes a messaging system based on a commander subordinate relationship.

26. Frequency: The update interval command built into AFSIM processors con-

trols the frequency an agent’s UBF tree is executed; this is required for a UBF

tree to execute. The frequency tag is used to control how often a child behavior

may execute.

27. Activate/Deactivate: This is partially implemented. The responsibility of keep-

ing a UBF tree lean, responsive, and relevant falls on the analyst using the

Add Behavior and Remove Behavior commands in each behavior. This capa-

bility could be in an extension of this thesis.

28. Execution Time Limit: This is not implemented as a limiting factor because the

focus is on discrete event based implementation. However, the tag debug time

is implemented to give analysts further ability tuning their UBF tree. This

command prints the time a behavior takes to execute each of its code blocks

in case an analyst needs to reduce the time taken to compute a simulations

output.

29. Leaf vs Composite node types: This is not implemented due to the scope being

towards non-real time execution. Section 6.2 presents a possible implementation

for this.

3.3 Manual pages for new AFSIM commands

This section is meant to be a reference for those implementing UBF in AFSIM

and familiarize readers with the grammar of UBFBehaviors and UBFArbiters. To

do this, the semantics of various similar terms is defined to prevent ambiguity and

43

provide clarity to the definitions. Example scripts are provided in Figures 7 and 8

showing full examples from the AFSIM integrated development environment. Finally

definitions are provided for every command and tag created by this thesis.

processor UBFArbiterName UBFArbiter
#Comment indicating proper use of this Arbiter
 script_variables #Tag indicating script_variables Code Block
 #commands
 end_script_variables

 Execute #Tag indicating Execute Code Block
 #commands
 UBFAction a;
 a=UBFArbiter.Get_First_Action();
 if(a.Get_Int()==1)
 UBFArbiter.Add_Action(a);
 end_Execute
end_processor

5

Figure 7. Example Script of UBFArbiter.

The semantically similar terms are “commands”, “tags”, “code blocks”, and

“script.” AFSIM uses its own language which its analysts use to create scenario

files for the AFSIM executable to compile into a replay file. The generic use of text

files analysts use are referred to as scripts, AFSIM script, or the AFSIM scripting

language. This is in contrast to the term “code block.” “Code block(s)” refer to a

specific subset of the AFSIM scripting language. In these code blocks generic pro-

gramming logic is used; such as, if-then statements, for loops, while loops, etc. The

logic inside a code block is referred to as “command(s)”. The set of commands may

be augmented, hence when a “command” is created it is usable within any “code

block.” “Tags” are used to indicate the start and end of code blocks, flags, switches,

variables, or a developer designed purpose. A tag does not have to be a code block

but all code blocks are encompassed by tags. Figure 8 shows a basic behavior script

in AFSIM and Figure 7 shows an example AFSIM script for a UBFArbiter object to

help readers associate the semantics of these terms with their implementation.

44

processor BehaviorNameHere UBFBehavior
#Comments indicating proper usage of this behavior

 #Tag indicating the update interval
 update_interval 10 sec
 #Tag indicating Arbiter name
 Arbiter ArbiterName
 #Tag indicating frequency in seconds
 Frequency 11
 #Flag indicating time to run will be printed
 Debug_Time

 #Tag indicating list of Children to follow
 Children
 Behavior BehaviorNameB
 Behavior BehaviorNameC
 Children
 Behavior BehaviorNameD
 end_Children
 end_Children

 #Tag indicating script_variables Code Block
 script_variables
 #commands
 end_script_variables

 Pre_Condition #Tag indicating Pre_condition Code Block
 #commands
 end_Pre_Condition

 Execute #Tag indicating Execute Code Block
 #commands
 while(true)
 {
 if(true){
 #do something
 }
 }
 #Custom added commands
 UBFAction a=UBFAction.Create("name",1, "value");
 UBFBehavior.Add_Action(a);
 end_Execute

 Map_To_Action #Tag indicating Map_To_Action Code Block
 #commands
 end_Map_To_Action
end_processor

4Figure 8. Example Script of UBFBehavior.

45

3.3.1 Tag Documentation.

UBFBehavior Tags.

The tags used within a UBFBehavior indicate the start or end of code blocks and

values that are associated with a UBFBehavior’s fields. The tags that are usable in

a UBFBehavior are:

Processor type: UBFBehavior
Scope: Top level AFSIM script tag or within a platform type
Description: This keyword is used to indicate the type of processor as a Behavior
Number allowed: no limit to number of UBFBehaviors, only one should be used di-
rectly in a platform type
Example Usage:

processor <name> UBFBehavior

#sub-tags...

end_Processor

Tag Name: update interval
Scope: Tag within UBFBehavior processor, only used in root behavior
Description: This tag indicates the frequency with which the UBFBehavior tree ex-
ecutes; pseudo optional, if omitted in root UBFBehavior the tree will never execute
and it has no effect if implemented in a child
Number Allowed: 0 or 1
Example Usage:

update_interval <time amount> <time unit>

Tag Name: Frequency
Scope: Tag within UBFBehavior processor, only used in child behaviors
Description: This tag indicates the frequency with which this UBFBehavior executes,
if omitted UBFBehavior executes whenever its parent calls it, never used in the root
Number Allowed: 0 or 1
Example Usage:

Frequency <int>

Tag Name: Debug Time
Scope: Tag within UBFBehavior processor

46

Description: This tag is a flag which causes the time each code block in a UBFBe-
havior takes to run to be printed to the output console in the AFSIM integrated
development environemnt
Number Allowed: 0 or 1
Example Usage:

Debug_Time

Tag Name: Arbiter
Scope: Tag within UBFBehavior processor
Description: This tag indicates the name of a UBFArbiter process to be used as an
arbiter for this behavior
Optional: Optional; If omitted all UBFAction objects provided to the UBFBehavior
object will automatically be sent to the parent UBFBehavior or Map To Action code
block respectively
Number Allowed: 0 or 1
Example Usage:

Arbiter <name>

Tag Name: Children
Scope: Tag within UBFBehavior processor
Description: This tag indicates the UBF tree structure associated with the associated
UBFBehavior; may be nested within itself defining children of children with a limited
depth of 30, if omitted then a UBFBehavior simply will not be instantiated with
children. Children may be added later via commands
Number Allowed: 0 or 1
Example Usage:

Children

{Behavior <behavior name>}*

end_Children

Tag Name: script variables
Scope: Tag within UBFBehavior processor
Description: This code block defines variables usable through all other code blocks of
the UBFBehavior with which it is associated, if omitted the UBFBehavior will not
have variables that persist between iterations or are shared between its code blocks
Number Allowed: 0 or 1
Return Type: No return type allowed
Example Usage:

script_variables

int defaultSpeed=100;

end_script_variables

47

Tag Name: Pre Condition
Scope: Tag within UBFBehavior processor
Description: This tag defines a code block which executes immediately when a UBF-
Behavior is executed; if false is returned the UBFBehavior immediately cedes control
to the parent or Map To Action block with no UBFAction objects being provided; if
true the UBFBehavior continues to execute, if omitted a value of true is assumed
Number Allowed: 0 or 1
Return Type: Boolean
Example Usage:

Pre_Condition

#commands

end_Pre_Condition

Tag Name: Execute
Scope: Tag within UBFBehavior processor
Description: This code block provides the logic which outputs UBFAction objects, if
omitted control passes directly from children to Arbiter code block
Number Allowed: 0 or 1
Return Type: none; UBFAction objects which are output are added via explicit
commands not via return keyword
Example Usage:

Execute

#commands

end_Execute

Tag Name: Map To Action
Scope: Tag within UBFBehavior processor
Description: This code block provides the logic which reads the UBFAction objects
and maps them to commands that affect the environment and/or platform with which
the UBF behavior is associated; pseudo optional; if omitted from root UBFBehavior
then the tree may have no effect on the environment or platform; if in child UBFBe-
haviors it will never be executed
Number Allowed: 0 or 1
Return Type: none
Example Usage:

Map_To_Action

#commands

end_Map_To_Action

48

Tag Name: Add Post Condition
Scope: Tag within UBFBehavior processor
Description: This tag allows users to add a single string to the post condition adder
set of a UBFBehavior indicating an effect on the world it expects to have
Number Allowed: 0 or more
Return Type: none
Example Usage:

Add_Post_Condition "OpenBombDoors"

Tag Name: Remove Post Condition
Scope: Tag within UBFBehavior processor
Description: This tag allows users to add a single string to the post condition remove
set of a UBFBehavior indicating an effect it expects to compensate for
Number Allowed: 0 or more
Return Type: none
Example Usage:

Remove_Post_Condition "OpenBombDoors"

Tag Name: Action Setting
Scope: Tag within UBFBehavior processor
Description: This tag allows users to add a single string to the action settings set of
a UBFBehavior indicating the motors it affects
Number Allowed: 0 or more
Return Type: none
Example Usage:

Action_Setting "UHFJammer"

Tag Name: Required Data
Scope: Tag within UBFBehavior processor
Description: This tag allows users to add a single string to the required data set of a
UBFBehavior indicating the sensors or preprocessed data the UBFBehavior needs to
operate
Number Allowed: 0 or more
Return Type: none
Example Usage:

Required_Data "UHF_Radar"

49

Tag Name: Goal Achieved
Scope: Tag within UBFBehavior processor
Description: This tag allows users to set the string value for the abstract goal a
UBFBehavior is supposed to achieve
Number Allowed: 0 or 1
Return Type: none
Example Usage:

Goal_Achieved "FlyHome"

Tag Name: Initial Condition
Scope: Tag within UBFBehavior processor
Description: This tag allows users to add a single string to the initial conditions set
of a UBFBehavior indicating the conditions required to activate this UBFBehavior
Number Allowed: 0 or more
Return Type: none
Example Usage:

Initial_Conditions "EnemyInRange"

UBFBehavior Commands.

Commands are added to the code blocks of the UBFBehavior object to provide

reflective access to the UBFBehavior objects. These commands are:

Command Name: .Find(string)
Scope: Method of the UBFBehavior class used via dot operator
Description: This command finds a UBFBehavior by name
Parameters: string of the name of the behavior to find
Returned Object: UBFBehavior
Example Usage:

UBFBehavior <behaviorName> = UBFBehavior.Find("FlyTo");

Command Name: .Remove Behavior(string)
Scope: Method of the UBFBehavior class used via dot operator
Description: This command finds a UBFBehavior by name in the objects list of chil-
dren behaviors and removes it from the list
Parameters: string of the name of the behavior to find
Returned Object: bool representing success or failure

50

Example Usages:

if(UBFBehavior.Remove_Behavior("FlyTo"))

if(<behaviorName>.Remove_Behavior("FlyTo"))

Command Name: .Add Behavior(string)
Command Name: .Add Behavior(UBFBehavior)
Scope: Method of the UBFBehavior class used via dot operator
Description: This command finds a UBFBehavior by name or takes another UBFBe-
havior pointer and adds it to the object in questions children list
Parameters: string or a UBFBehavior to be added
Returned Object: bool representing success or failure
Example Usages:

if(UBFBehavior.Add_Behavior("FlyTo"))

if(<behaviorName>.Add_Behavior("FlyTo"))

Command Name: .Add Adder Post Condition(string)
Command Name: .Add Remove Post Condition(string)
Command Name: .Add Add Action Setting(string)
Command Name: .Add Add Required Data(string)
Command Name: .Add Initial Condition(string)
Scope: Methods of the UBFBehavior class used via dot operator
Description: These commands add strings to their associated lists
Parameters: string to be added
Returned Object: n/a
Example Usages:

UBFBehavior.Add_Adder_Post_Condition("Close Bomb Doors"));

UBFBehavior.Add_Remove_Post_Condition("Open Bomb Doors"));

<behaviorName>.Add_Add_Action_Setting("Bomb Doors"));

UBFBehavior.Add_Add_Required_Data("10kHz Laser Range Finder"));

UBFBehavior.Add_Initial_Condition("In Florida"));

Command Name: .Adder Post Condition Exists(string)
Command Name: .Remove Post Condition Exists(string)
Command Name: .Action Setting Exists(string)

51

Command Name: .Required Data Exists(string)
Command Name: .Initial Condition Exists(string)
Scope: Methods of the UBFBehavior class used via dot operator
Description: These commands determine if a string exists in their respective lists
Parameters: string to be searched for
Returned Object: bool showing success if the string was found or not
Example Usages:

if(<behaviorName>.Adder_Post_Condition_Exists("Close Bomb Doors"))

if(UBFBehavior.Remove_Post_Condition_Exists("Open Bomb Doors"))

if(UBFBehavior.Action_Setting_Exists("Bomb Doors"))

if(UBFBehavior.Required_Data_Exists("10kHz Laser Range Finder"))

if(UBFBehavior.Initial_Condition_Exists("In Florida"))

Command Name: .Set GoalAchieved(string)
Scope: Method of the UBFBehavior class used via dot operator
Description: This command sets the Goal Achieved variable to a specified string
Parameters: string to be set
Returned Object: n/a
Example Usages:

if(UBFBehavior.Set_GoalAchieved("Navigates Home"))

Command Name: .Get GoalAchieved()
Scope: Method of the UBFBehavior class used via dot operator
Description: This command gets the Goal Achieved variable
Parameters:
Returned Object: string of the goal achieved which may be empty
Example Usage:

string temp=UBFBehavior.Get_GoalAchieved();

Command Name: .Get Adder Post Condition byIndex(int)
Command Name: .Get Remove Post Condition byIndex(int)
Command Name: .Get Action Setting byIndex(int)
Command Name: .Get Required Data byIndex(int)
Command Name: .Get Initial Condition byIndex(int)
Scope: Methods of the UBFBehavior class used via dot operator
Description: These commands return the string at the index of the respective list or
“DNE” if there is no item there

52

Parameters: integer of the index of the list desired
Returned Object: string of the variable at the indexed location of the respective list
Example Usages:

string temp=UBFBehavior.Get_Adder_Post_Condition_byIndex(1);

string temp=<behaviorName>.Get_Remove_Post_Condition_byIndex(1);

string temp=UBFBehavior.Get_Action_Setting_byIndex(1);

string temp=UBFBehavior.Get_Required_Data_byIndex(1);

string temp=UBFBehavior.Get_Initial_Condition_byIndex(1);

Command Name: .Adder Post Condition Size()
Command Name: .Remove Post Condition Size()
Command Name: .Action Setting Size()
Command Name: .Required Data Size()
Command Name: .Initial Condition Size()
Scope: Methods of the UBFBehavior class used via dot operator
Description: These commands return the size of their respective lists
Parameters: none
Returned Object: integer indicating the size of the respective list
Example Usages:

int temp=UBFBehavior.Adder_Post_Condition_Size();

int temp=UBFBehavior.Remove_Post_Condition_Size();

int temp=<behaviorName>.Action_Setting_Size();

int temp=UBFBehavior.Required_Data_Size();

int temp=<behaviorName>.Initial_Condition_Size();

UBFArbiter Tags.

The tags used within a UBFArbiter indicate the start or end of the code blocks.

The tags that are usable in a UBFArbiter are:

Processor type: UBFArbiter
Scope: Top level AFSIM script only
Description: This keyword is used to indicate the type of processor as an Arbiter
which may later be referenced to by a UBFBehavior
Number allowed: no limit to number of UBFArbiters
Example Usage:

processor <name> UBFArbiter

#sub-tags...

end_Processor

53

Tag Name: script variables
Scope: Tag within UBFArbiter processor
Description: This code block defines variables usable through all other code blocks of
the UBFArbiter with which it is associated
Number Allowed: 0 or 1
Return Type: No return type allowed
Example Usage:

script_variables

int defaultSpeed=100;

end_script_variables

Tag Name: Execute
Scope: Tag within UBFArbiter processor
Description: This code block provides the logic which may process input UBFActions
via UBFArbiter.Get... commands and output UBFActions via UBFArbiter.Add Action(...)
Number Allowed: 1
Optional: No; if omitted, no UBFAction objects will pass through, all UBFActions
input will be discarded
Return Type: none; UBFAction objects which are output are added via explicit com-
mands not via return keyword
Example Usage:

Execute

#commands

end_Execute

Commands - UBFActionList.

Commands are added to code blocks that expose the UBFActionList object type

and its associated functions. These commands are inherited and usable to modify the

UBFActionList objects inherited by UBFBehavior and UBFArbiter objects. These

commands are:

Object type: UBFActionList
Scope: usable within UBFArbiter code blocks and UBFBehavior code blocks
Description: This object may be instantiated on its own; it is used as the default
storage device for outputting UBFActions in UBFBehaviors; it is used as the default
storage devices for inputting and outputting UBFActions in UBFArbiters

54

Example Usages:
Declare UBFActionList variable:

UBFActionList <listName>;

Command Name: .Create()
Scope: Method of the UBFActionList class used via dot operator
Description: This command instantiates a UBFActionList object
Parameters: None
Returned Object: UBFActionList
Example Usage:
Instantiate UBFActionList variable:

UBFActionList <listName> = UBFActionList.Create();

Command Name: .Get Action By Index(int)
Scope: Method of a UBFActionList object used via dot operator
Description: This command retrieves a UBFAction by its index in a UBFActionList
object; if index out of bounds then a null object pointer is returned
Parameters: Integer representing index of a UBFAction
Returned Object: UBFAction
Example Usages:
UBFActionList object:

UBFAction actionA = <listName>.Get_Action_By_Index(5);

UBFBehavior storage:

UBFAction actionA = UBFBehavior.Get_Action_By_Index(5);

UBFArbiter input:

UBFAction actionA = UBFArbiter.Get_Action_By_Index(5);

Command Name: .Erase Action By Name(string)
Scope: Method of a UBFActionList object used via dot operator
Description: This command finds and removes the first UBFAction by the name
supplied
Parameters: Integer representing index of a UBFAction
Returned Object: UBFAction
Example Usages:
UBFActionList object:

UBFAction actionA = <listName>.Erase_Action_By_Name("fly");

55

UBFBehavior storage:

UBFAction actionA = UBFBehavior.Erase_Action_By_Name("fly");

UBFArbiter input:

UBFAction actionA = UBFArbiter.Erase_Action_By_Name("fly");

Command Name: .Get First Action()
Scope: Method of a UBFActionList object used via dot operator
Description: This command retrieves the first UBFAction in the UBFActionList ob-
ject; if empty a null object pointer is returned
Parameters: None
Returned Object: UBFAction
Example Usages:
UBFActionList object:

UBFAction actionA = <listName>.Get_First_Action();

UBFBehavior storage:

UBFAction actionA = UBFBehavior.Get_First_Action();

UBFArbiter input:

UBFAction actionA = UBFArbiter.Get_First_Action();

Command Name: .Get Last Action()
Scope: Method of a UBFActionList object used via dot operator
Description: This command retrieves the last UBFAction in the UBFActionList ob-
ject; if empty a null object pointer is returned
Parameters: None
Returned Object: UBFAction
Example Usages:
UBFActionList object:

UBFAction actionA = <listName>.Get_Last_Action();

UBFBehavior storage:

UBFAction actionA = UBFBehavior.Get_Last_Action();

UBFArbiter input:

UBFAction actionA = UBFArbiter.Get_Last_Action();

56

Command Name: .Get Next Action()
Scope: Method of a UBFActionList object used via dot operator
Description: This command retrieves the next UBFAction in the UBFActionList ob-
ject; if at the end of the list or the list is empty a null object pointer is returned; this is
tracked behind the scenes to a user; automatically sets to the first object each time the
UBF tree restarts; may be set back to the beginning by the Restart Next Iterator()
method
Parameters: None
Returned Object: UBFAction
Example Usages:
UBFActionList object:

UBFAction actionA = <listName>.Get_Next_Action();

UBFBehavior storage:

UBFAction actionA = UBFBehavior.Get_Next_Action();

UBFArbiter input:

UBFAction actionA = UBFArbiter.Get_Next_Action();

Command Name: .Restart Next Iterator()
Scope: Method of a UBFActionList object used via dot operator
Description: This command sets the iterator used by the UBFActionList object in
question back to the start of its list; this is used with the Get Next Action() command
Parameters: None
Returned Object: None
Example Usages:
UBFActionList object:

<listName>.Restart_Next_Iterator();

UBFBehavior storage:

UBFBehavior.Restart_Next_Iterator();

UBFArbiter input:

UBFArbiter.Restart_Next_Iterator();

Command Name: .Get Number Of Actions()
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns the number of UBFActions in the UBFActionList
object in question

57

Parameters: None
Returned Object: integer representing number of UBFActions in the UBFActionList
object in question
Example Usages:
UBFActionList object:

int size = <listName>.Get_Number_Of_Actions();

UBFBehavior storage:

int size = UBFBehavior.Get_Number_Of_Actions();

UBFArbiter input:

int size = UBFArbiter.Get_Number_Of_Actions();

Command Name: .Get Actions By Exact Name(string)
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns a UBFActionList object of UBFActions whose
name(s) exactly match the provided string
Parameters: string representing the name to be matched
Returned Object: UBFActionList
Example Usages:
UBFActionList object:

UBFActionList <listNameA> =

<listNameB>.Get_Actions_By_Exact_Name("fly");

UBFBehavior storage:

UBFActionList <listNameA> =

UBFBehavior.Get_Actions_By_Exact_Name("fly");

UBFArbiter input:

UBFActionList <listNameA> =

UBFArbiter.Get_Actions_By_Exact_Name("fly");

Command Name: .Get Actions By Partial Name(string)
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns a UBFActionList object of UBFActions which
whose name(s) contain the provided string
Parameters: string representing the name to be matched
Returned Object: UBFActionList
Example Usages:
UBFActionList object:

58

UBFActionList <listNameA> =

<listNameB>.Get_Actions_By_partial_Name("fly");

UBFBehavior storage:

UBFActionList <listNameA> =

UBFBehavior.Get_Actions_By_partial_Name("fly");

UBFArbiter input:

UBFActionList <listNameA> =

UBFArbiter.Get_Actions_By_partial_Name("fly");

Command Name: .Get Actions By Exact Priority(int)
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns a UBFActionList object of UBFActions whose
priority is the same as the provided integer
Parameters: integer representing the priority to be compared against
Returned Object: UBFActionList
Example Usages:
UBFActionList object:

UBFActionList <listNameA> =

<listNameB>.Get_Actions_By_Exact_Priority(3);

UBFBehavior storage:

UBFActionList <listNameA> =

UBFBehavior.Get_Actions_By_Exact_Priority(3);

UBFArbiter input:

UBFActionList <listNameA> =

UBFArbiter.Get_Actions_By_Exact_Priority(3);

Command Name: .Get Actions By Min Priority(int)
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns a UBFActionList object of UBFActions whose
priority is at least the provided integer
Parameters: integer representing the priority compared against
Returned Object: UBFActionList
Example Usages:
UBFActionList object:

UBFActionList <listNameA> =

<listNameB>.Get_Actions_By_Min_Priority(2);

59

UBFBehavior storage:

UBFActionList <listNameA> =

UBFBehavior.Get_Actions_By_Min_Priority(2);

UBFArbiter input:

UBFActionList <listNameA> =

UBFArbiter.Get_Actions_By_Min_Priority(2);

Command Name: .Get Actions by type Double()
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns a UBFActionList object of UBFActions who have
had the double value set
Parameters: None
Returned Object: UBFActionList
Example Usages:
UBFActionList object:

UBFActionList <listNameA> =

<listNameB>.Get_Actions_by_type_Double();

UBFBehavior storage:

UBFActionList <listNameA> =

UBFBehavior.Get_Actions_by_type_Double();

UBFArbiter input:

UBFActionList <listNameA> =

UBFArbiter.Get_Actions_by_type_Double();

Command Name: .Get Actions by type Int()
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns a UBFActionList object of UBFActions who have
had the integer value set
Parameters: None
Returned Object: UBFActionList
Example Usages:
UBFActionList object:

UBFActionList <listNameA> =

<listNameB>.Get_Actions_by_type_Int();

UBFBehavior storage:

60

UBFActionList <listNameA> =

UBFBehavior.Get_Actions_by_type_Int();

UBFArbiter input:

UBFActionList <listNameA> =

UBFArbiter.Get_Actions_by_type_Int();

Command Name: .Get Actions by type String()
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns a UBFActionList object of UBFActions who have
had the string value set
Parameters: None
Returned Object: UBFActionList
Example Usages:
UBFActionList object:

UBFActionList <listNameA> = <listNameB>.Get_Actions_by_type_String();

UBFBehavior storage:

UBFActionList <listNameA> = UBFBehavior.Get_Actions_by_type_String();

UBFArbiter input:

UBFActionList <listNameA> = UBFArbiter.Get_Actions_by_type_String();

Command Name: .Get Actions Unique Top Priorities()
Scope: Method of a UBFActionList object used via dot operator
Description: This command returns a UBFActionList object of UBFActions who have
unique names amongst themselves and are the highest priority of identically named
UBFActions from the original UBFActionList object
Parameters: None
Returned Object: UBFActionList
Example Usages:
UBFActionList object:

UBFActionList <listNameA> =

<listNameB>.Get_Actions_Unique_Top_Priorities();

UBFBehavior storage:

UBFActionList <listNameA> =

UBFBehavior.Get_Actions_Unique_Top_Priorities();

UBFArbiter input:

61

UBFActionList <listNameA> =

UBFArbiter.Get_Actions_Unique_Top_Priorities();

Command Name: .Add Action(UBFAction)
Scope: Method of a UBFActionList object used via dot operator
Description: This command adds a UBFAction object to the UBFActionList in ques-
tion; if invoked via UBFBehavior.Add Action(...) it adds the UBFAction to the cur-
rently operating UBFBehavior’s set of UBFActions; if invoked within a UBFArbiter
code block via UBFArbiter.Add Action(...) it adds the UBFAction to the currently
operating UBFArbiter’s set of UBFActions that will be output (can not explicitly
remove or access this output list besides this method)
Parameters: None
Returned Object: N/A
Example Usages:
UBFActionList object:

<listNameB>.Add_Action(ActionA);

UBFBehavior storage:

UBFBehavior.Add_Action(ActionA);

UBFArbiter output:

UBFArbiter.Add_Action(ActionA);

Commands - UBFAction.

Commands are added to code blocks that expose the UBFAction object type, its

associated functions, and associated fields. This allows the use of UBFAction objects.

These commands are:

Object type: UBFAction
Scope: Usable within UBFArbiter code blocks and UBFBehavior code blocks
Description: This object may be instantiated on its own; it is used to group together
a name, priority, an integer value, a double value, and a string value into a single
place
Example Usage:
Declare UBFActionList variable

UBFAction <actionName>;

62

Command Name: .Create()
Scope: Method of a UBFAction object used via dot operator
Description: This command instantiates a UBFAction object
Parameters: None
Returned Object: UBFAction
Example Usage:

UBFAction <actionNameB> = UBFAction.Create();

Command Name: .Create(string, double, double, string)
Scope: Method of a UBFAction object used via dot operator
Description: This command instantiates a UBFAction object with values set to the
provided parameters
Parameters: string representing the name, double representing the priority, double
representing the vote, string representing a value
Returned Object: UBFAction
Example Usage:

UBFAction <actionNameB> = UBFAction.Create("Fly", 4, 10, "Dayton");

Command Name: .Create(string, double, double, int)
Scope: Method of a UBFAction object used via dot operator
Description: This command instantiates a UBFAction object with values set to the
provided parameters; currently not invokable since AFSIM automatically calls the
double version of the Create method and casts the value to a double
Parameters: string representing the name, double representing the priority, double
representing the vote, int representing a value
Returned Object: UBFAction
Example Usage:

UBFAction <actionNameB> = UBFAction.Create("Fly", 4, 10, 77);

Command Name: .Create(string, double, double, double)
Scope: Method of a UBFAction object used via dot operator
Description: This command instantiates a UBFAction object with values set to the
provided parameters
Parameters: string representing the name, double representing the priority, double
representing the vote, double representing a value
Returned Object: UBFAction
Example Usage:

UBFAction <actionNameB> = UBFAction.Create("Fly", 4, 10, 22.55);

63

Command Name: .Create(string, double, double, WsfGeoPoint)
Scope: Method of a UBFAction object used via dot operator
Description: This command instantiates a UBFAction object with values set to the
provided parameters
Parameters: string representing the name, double representing the priority, double
representing the vote, WsfGeoPoint representing a value
Returned Object: UBFAction
Example Usage:

UBFAction <actionNameB> = UBFAction.Create("Fly", 4, 10, GeoPointObject);

Command Name: .Create(string, double, double, WsfTrack)
Scope: Method of a UBFAction object used via dot operator
Description: This command instantiates a UBFAction object with values set to the
provided parameters
Parameters: string representing the name, double representing the priority, double
representing the vote, WsfTrack object representing a value
Returned Object: UBFAction
Example Usage:

UBFAction <actionNameB> = UBFAction.Create("Fly", 4, 12, TrackObject);

Command Name: .Create(string, double, double, WsfRoute)
Scope: Method of a UBFAction object used via dot operator - Currently BROKEN
Description: This command is supposed to instantiate a UBFAction object with
values set to the provided parameters, however the WsfRoute object is currently
broken
Parameters: string representing the name, double representing the priority, double
representing the vote, WsfRoute object representing a value
Returned Object: UBFAction
Example Usage:

UBFAction <actionNameB> = UBFAction.Create("Fly", 4, 10, RouteObject);

Command Name: .Create(UBFAction)
Scope: Method of a UBFAction object used via dot operator
Description: This command instantiates a UBFAction object by copying another
UBFAction object
Parameters: UBFAction object to be copied
Returned Object: UBFAction
Example Usage:

64

UBFAction <actionNameB> = UBFAction.Create(ActionBravo);

Command Name: .Get Name()
Scope: Method of a UBFAction object used via dot operator
Description: This command returns the name of the UBFAction object
Parameters: None
Returned Object: string representing name of UBFBehavior
Example Usage:

string tempString = <actionNameB>.Get_Name();

Command Name: .Get Priority()
Scope: Method of a UBFAction object used via dot operator
Description: This command returns the priority of the UBFAction object, higher
priority is closest to 0
Parameters: None
Returned Object: Integer representing priority of the UBFAction object
Example Usage:

int tempPriority = <actionNameB>.Get_Priority();

Command Name: .Get Vote()
Scope: Method of a UBFAction object used via dot operator
Description: This command returns the vote of the UBFAction object, higher vote is
the larger number
Parameters: None
Returned Object: Integer representing vote of the UBFAction object
Example Usage:

int tempVote = <actionNameB>.Get_Vote();

Command Name: .Get Int()
Scope: Method of a UBFAction object used via dot operator
Description: This command returns the integer value field of the UBFAction object
Parameters: None
Returned Object: integer of the integer value field of the UBFAction object
Example Usage:

int tempString = UBFAction.Get_Int();

Command Name: .Get Double()
Scope: Method of a UBFAction object used via dot operator

65

Description: This command returns the double value field of the UBFAction object
Parameters: None
Returned Object: Double of the double value field of the UBFAction object
Example Usage:

double tempString = <actionNameB>.Get_Double();

Command Name: .Get String()
Scope: Method of a UBFAction object used via dot operator
Description: This command returns the string value field of the UBFAction object
Parameters: None
Returned Object: string of the string value field of the UBFAction object
Example Usage:

string tempString = <actionNameB>.Get_String();

Command Name: .Get Track()
Scope: Method of a UBFAction object used via dot operator
Description: This command returns the WsfTrack value field of the UBFAction object
Parameters: None
Returned Object: WsfTrack of the WsfTrack value field of the UBFAction object
Example Usage:

WsfTrack tempTrack = <actionNameB>.Get_Track();

Command Name: .Get Geo Point()
Scope: Method of a UBFAction object used via dot operator
Description: This command returns the double value field of the UBFAction object
Parameters: None
Returned Object: WsfGeoPoint of the WsfGeoPoint value field of the UBFAction
object
Example Usage:

WsfGeoPoint tempPoint = <actionNameB>.Get_Geo_Point();

Command Name: .Get Route()
Scope: Method of a UBFAction object used via dot operator
Description: This command returns the double value field of the UBFAction object
Parameters: None
Returned Object: WsfRoute of the WsfRoute value field of the UBFAction object
Example Usage:

double tempString = <actionNameB>.Get_Double();

66

Command Name: .Set Name(string)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the name of the UBFAction object
Parameters: String of the Name for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_Name("FlyToDallas");

Command Name: .Set Priority(double)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the priority of the UBFAction object, higher priority
is closest to 0
Parameters: Double of the priority for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_Priority(10);

Command Name: .Set Vote(double)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the vote of the UBFAction object, highest vote is
the larger number
Parameters: Double of the vote for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_Vote(10);

Command Name: .Set Int(int)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the integer value field of the UBFAction object
Parameters: Integer of the integer value field for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_Int(10);

Command Name: .Set Double(double)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the double value field of the UBFAction object

67

Parameters: Double of the double value field for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_Double(10.2);

Command Name: .Set String(string)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the string value field of the UBFAction object
Parameters: String of the string value field for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_String("FLY");

Command Name: .Set Track(WsfTrack)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the WsfTTrack value field of the UBFAction object
Parameters: WsfTrack of the WsfTrack value field for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_Track(TrackObject);

Command Name: .Set Geo Point(WsfGeoPoint)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the WsfGeoPoint value field of the UBFAction object
Parameters: WsfGeoPoint of the WsfGeoPoint value field for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_Geo_Point(GeoPointObject);

Command Name: .Set Route(WsfRoute)
Scope: Method of a UBFAction object used via dot operator
Description: This command sets the WsfRoute value field of the UBFAction object
Parameters: WsfRoute of the WsfRoute value field for this UBFAction
Returned Object: None
Example Usage:

<actionNameB>.Set_Route(RouteObject);

68

3.4 Summary

This chapter examines concepts and commands necessary to extend AFSIM with

UBF. An understanding of the underlying structure of UBF in AFSIM is gained

through a presentation of the C++ class structure and flow charts depicting the

sequence in which code blocks execute. A mapping of other frameworks to this plug-

in is provided in order to show the concepts that were and were not implemented

for this thesis. The concepts of other frameworks/languages that are implemented or

omitted are shown by an examination of those concepts. The requirement for new

commands is established through this examination via differentiating which concepts

may re-utilize AFSIM components and which require new commands. Familiarity

of the UBF in AFSIM syntax is gained through the documentation of all the new

commands in Section 3.3.1. Through a detailed examination of the code structure,

a mapping from other framework’s concepts, and documentation of the syntax, the

commands and concepts necessary for the Unified Behavior Framework in AFSIM is

established.

69

IV. Experimental Implementation and Evaluation

Chapter III described the methodology to augment the Advanced Framework for

Simulation, Integration, and Modeling (AFSIM) scripting language, however, that is

not enough to demonstrate behavioral emergence or that this is an acceptable tool

to use. This chapter demonstrates behavioral emergence through four scenarios in

the AFSIM which use the new Unified Behavior Framework (UBF) implementation.

The first scenario is a proof of concept demonstrating the ability to replace a Be-

havior Tree (BT) from training materials of AFSIM and establishes an interface for

the Map To Action code block. The second scenario evaluates the potential bene-

fit of behavioral emergence over discrete behavior selection and display the effects

of tuning the emergence. The third scenario demonstrates behavioral emergence by

implementing the Boids [11] strategy for swarming; this strategy relies on emergence

for swarming to occur. The forth scenario examines the effort required to merge sce-

narios two and three in order to show the increase in code reuse and maintainability

of UBF over BTs.

This chapter reuses the prior symbols to indicate the role of different elements in a

UBFBehavior, also seen in Figure 9. The lines for the thread of execution and the flow

of action objects are omitted because those processes are implied in this chapter. The

individual components of UBF behaviors may also be omitted. If a figure shows all

components of a behavior omitted then no assumptions are made about the contents

of the behavior, typically used to show a tree structure or children of a behavior, thus

a child is not considered a component of a behavior in this context. If any component

of a behavior is included then it is assumed the figure shows all of the components

for that behavior; this is used to prevent figures of UBF behaviors from misleading

their readers by possibly omitting behavior changing components, i.e. an extreme

example is omitting a pre condition code block that always fails, effectively nullifying

70

the rest of the components. A figure showing a UBF tree with children whom also

have children does not indicate if the child’s tree defined its own children or if the

children were defined by the parent, or both. Figures for BTs do not use these special

symbols because they only require an indication of the node type, behavior name,

and representation of their structure.

Map To Action Pre-Conditions

Children

Execute

Key

Arbiter

Figure 9. UBFBehavior Key.

4.1 Behavior Tree Adapted scenario

The AFSIM’s analyst training includes a basic tutorial on its implementation of

behavior trees; this was used as a proof of concept to show the UBF implementation

can replace an existing BT. This tutorial consists of a scenario with a blue force

defending against a red force. The red force consists of a command ship, 4 stand off

jammer (SOJ) aircraft, and 4 unmanned combat air vehicles (UCAV) on an attack

run. All red units simply follow a pre-defined route and shoot munitions when in

range of pre-assigned targets. The blue force consists of 4 targets, various radars to

detect the enemy, various surface to air missile (SAM) sites to shoot enemies that get

close, a command post to assign units tasks, and 4 behavior tree controlled striker

aircraft acting as active defenders. The behavior tree on the 4 strikers is replaced by

a UBF tree and shown to have a similar effectiveness on the outcome. An image with

71

the initial scenario is shown in Figure 10.

Figure 10. Initial Scenario BT to UBF

The tutorial BT is shown in Figure 11 and the resulting UBF tree is shown in

Figure 12. Scripts for these are shown in Appendix B.1. These diagrams show the

translation of a BT to a UBF tree.

Parallel Node

Selector Node

Pursue TargetPlanned Route

Engage Task
with Weapon

Figure 11. Tutorial Behavior Tree.

72

Map to Action
Node

Select Move-
ment

Copy All

Engage Task
with Weapon

Assign
Weapon

Check
Quality

Generate Tar-
gets

Generate Targets

Planned Route

Assign Route

Pursue Target

Pursuit Route

Figure 12. Tutorial UBF Tree.

4.1.1 Translating the Individual Behaviors.

In order to translate each behavior from a BT to a UBF tree the definitions for

individual behaviors are provided. The normal, non-bold, text is a generic definition

for a behavior whereas the bold text is additional detail used to specifically define

the interface of a behavior in the UBF tree, the UBF Action object’s format. Each

behavior’s definition is:

73

Name: Planned Route
Description: Sets the agent to the original pre-planned route if and only if it was
extrapolating its path
Dependencies: The agent needs a mover object associated with it and a route object
associated with it
Output: Original route

Name RouteLat/RouteLong
Priority waypoint’s index in the route
double Lat/Long
int altitude only for routeLong
Name RouteStart
Priority starting point for route index
double route.size()

Name: Pursue Target
Description: Sets the agent route to the target associated with the first task assigned
Dependencies: The agent needs a mover object and a task assigned to it
Output: Route to a Target Platform

Name RouteLat/RouteLong
Priority waypoint’s index in the route
double Lat/Long
int altitude only for routeLong

Name: Engage Task with Weapon
Description: Generates an attack against the tasked target IFF in range and viable
Dependencies: Input

Name Target
Priority n/a
int WsfTrackId.Number()
string WsfTrackId.Name()

Output: Attacking of a tasked target with valid a weapon

Name Weapon
Priority n/a
int WsfTrackId.Number()
string WsfTrackId.Name()
Double weapon index

Name: Generate Targets
Description: This behavior generates targets from a task list
Dependencies: n/a
Output: Targets for the agent to attack

Name Target
Priority 2
int WsfTrackId.Number()
string WsfTrackId.Name()

74

Name: Select Movement
Description: This behavior is used to combine children
Dependencies: n/a
Output: Each item that was input

Name: Map to Action Node
Description: This behavior maps action recommendations to outputs
Dependencies: Input:

Name Weapon
Priority n/a
int WsfTrackId.Number()
string WsfTrackId.Name()
Double weapon index
Name RouteLat/RouteLong
Priority waypoint’s index in the route
double Lat/Long
int altitude only for routeLong

Output: effects on the agent

4.1.2 Discussion of BT translation to UBF tree.

This implementation presents multiple items regarding conversion of a BT to a

UBF tree. First, more effort is required by UBF tree creators if they do not have

pre-defined arbiters or an established standard Map To Action code block that im-

plements action recommendations. The Map To Action code block starts to establish

this standard with its ability to fly the agent to points and attack the target if given

the correct actions. These arbiters demonstrate that an analyst is able to create com-

pletely custom arbiters for their code, however these arbiters are only applicable to

a very specific set of inputs. Creating a generic set of arbiters based on the priority

and vote values could accomplish that idea.

Second, this implementation shows that UBF behaviors can be used to modify

and combine behaviors; it is worth noting that modifying other behavior’s output

should be done in the Execute code block of a parent behavior, not the Arbiter. If

75

done in the Arbiter, the Arbiter’s purpose is bound to the behavior and vice versa

instead of simply having a behavior to accomplish that purpose, two items where one

is necessary.

The third item this implementation presents is the ability for UBF trees to replace

BTs. In Figures 13 and 14 the result of the UBF controlled and BT controlled

scenarios are shown. These figures show that a squad of intelligent agent controlled

blue aircraft were able to fly out, destroy their tasked targets, and return to their

home routes (currently returning in the figures). As much of the script as possible is

reused in creating the UBF behaviors to mirror their BT counter parts. Due to the

fact that the UBF tree agents accomplish the same abstract goals of destroying their

tasked targets, flying at their tasked targets, and returning home, with similar scripts

this acts as a proof of concept that UBF can replace a BT inside of AFSIM.

Figure 13. BT to UBF Scenario - UBF Agents.

76

Figure 14. BT to UBF Scenario - BT Agents.

4.2 Established interfaces

In order to reduce the overhead of creating custom ‘Map To Action’ and ‘Arbiter’

code blocks for every agent standards are established. The first standard is: arbiter

objects must be built generically, i.e. an arbiter should not need to know the integer

field is a weapon index. Based on this, the set of arbiters created and usable are:

•Fusion Dbl

•Fusion Int

•Fusion GeoPoint

•Fusion Dbl Int GeoPoint

•Fusion Vote Dbl

•Fusion Vote Int

•Fusion Vote GeoPoint

•Fusion Vote Dbl Int GeoPoint

77

•WTA Priority

•WTA Vote

•Fusion ByName Dbl

•Fusion ByName Int

•Fusion ByName GeoPoint

•Fusion ByName Dbl Int GeoPoint

•Fusion ByName Vote Dbl

•Fusion ByName Vote Int

•Fusion ByName Vote GeoPoint

•Fusion ByName Vote Dbl Int GeoPoint

•WTA ByName Priority

•WTA ByName Vote

The arbiters all act respective of their names. The “Fusion” arbiters all average

together the contents of the fields they denote, copy forward the name, priority,

averaged vote fields, and drop the fields not mentioned. For example Fusion Dbl

averages the double fields of all provided action objects and does not pass forward

any of the other value fields. Similarly a Fusion Vote arbiter averages the respective

fields by weighting the actions with their vote values.

Some of the arbiters act based on the priority or vote of the actions. These two

concepts differ slightly. Votes are higher if the number is larger and greater than zero

while priorities are higher if the number is closer to 0 and non-negative. Hence, the

0th priority is the best and a vote of 100 has more impact than a vote of 1. Priorities

are also conceptually a method used to group actions together while votes are meant

to show the degree to which an action should affect the agent.

The “WTA” arbiters are “winner take all” decisions which are made based on

the priority or vote fields as their names suggest. The arbiters with a “ByName”

substring return one action object for every unique name among the set of actions

78

provided, with the corresponding operation being executed on each uniquely named

set. The winner take all arbiters behave slightly differently when operating on a by

name basis. The winner take all arbiters who do not consider the name may pass

forward a set of actions. This set of actions has the same vote or priority value that

is the highest among all action objects. The winner take all arbiters who do consider

the name may also pass forward a set of actions. However, this resultant set of actions

has a single entry for each unique name in the original set and that entry has the

highest priority or vote among the subset of other behaviors with the same name.

The Map To Action code block standard is inspired from the implementation in

Section 4.1. The scenarios in Sections 4.3 and 4.4 do not use weapons so that portion

of the Map To Action code block is not used. Also, since a latitude and longitude

are all that is needed the input of the code block uses a WsfGeoPoint instead. The

name required is “Route” for each action object input to the root. The index of the

point in the route’s list of points is held in the integer value field of the action object.

The actual script used for this is shown in Figure 15.

Essentially the Map To Action code block sets the autopilot to a new point(s)

every ten seconds. Vector inputs such as the “GotoLocation” method is not used in

the standard because these commands cause silent run time errors that have not been

solved; the simulation stops with no error message. This led to a standard, which

uses commands that work and behaviors map their outputs to that standard.

The use of these standards decreases time to implement agents. These standards

are not universal and are designed specifically for the scenarios in Sections 4.3 and 4.4.

These are used as examples showing standards should be used when teams develop

behaviors for a UBF tree.

79

platform_type Printer_Friendly_Map_To_Action WSF_PLATFORM
 processor rootNode UBFBehavior
 update_interval 10 sec
 Map_To_Action
 if(UBFBehavior.Get_Number_Of_Actions()==0)
 {
 return;
 }
 UBFActionList RouteList =
 UBFBehavior.Get_Actions_By_partial_Name("Route");

 if(RouteList.Get_Number_Of_Actions()>0)
 {
 #construct array of points
 Array<WsfGeoPoint> points;
 points = Array<WsfGeoPoint>();
 for(int ii=0;ii<RouteList.Get_Number_Of_Actions();ii=ii+1)
 {
 UBFAction tempAction = RouteList.Get_Action_By_Index(ii);
 points.Set(tempAction.Get_Int(),tempAction.Get_Geo_Point());
 }
 #current position as start
 points.Set(0,PLATFORM.Location());
 WsfRoute newRoute =WsfRoute();
 for(int ii=0;ii<points.Size();ii=ii+1)
 {
 newRoute.Append(points.Get(ii),450.0);
 }

 if((newRoute.Size()>0)&&(newRoute.IsValid()))
 {
 PLATFORM.FollowRoute(newRoute);
 }
 }
 end_Map_To_Action
 end_processor
end_platform_type

1

Figure 15. Map To Action standard.

4.3 Behavior Emergence tuning scenario

The emergence of behaviors versus the use of a behavior tree (BT) is not explored

in Section 4.1. In order to explore an advantage of behavior emergence over discrete

behavior selection a new scenario is used. This scenario involves a behavior tree agent

80

in blue, the discrete behavior selection, and a Unified Behavior Language agent in

red, the emergent behavior, flying to a goal point while avoiding an obstacle in the

way. The emergent behavior is identified by a number overlaid on its aircraft to assist

further differentiating the aircraft, this is the vote of the avoid obstacle behavior for

that agent. Time to reach the goal is used as a measurement to compare the two

methods. Less time results in less fuel used with vehicles at a fixed speed, a shorter

distance being covered, and a smoother path being used.

4.3.1 Behavior Structures Implemented.

Similar behaviors are used between the two implementations. Each structure has

a behavior to fly to the goal point and another to avoid a point. The UBF tree also has

a behavior called “EmergenceNormalize” which is used to ensure the WsfGeoPoint

used is not too close to the aircraft, sets it about 7 miles away in the correct direction

to prevent the agent from thinking it successfully arrived at a point because the point

was too close to it when placed. The UBF tree is displayed in Figure 17 and the BT

is displayed in Figure 16. The actual scripts for each are included in Appendix 2.2

Parallel Node

Selector Node

FlyAwayFromObstacleBT FlyAtPointBT

Figure 16. Behavior Tree of Fly To Goal Agent.

Similar formatting to section 4.1 is used for these behavior’s definitions, which

are as follows:

81

Root Node

Assign Route

EmergenceNormalize

Normalize GeoPoint

Emergence

Fusion Vote
GeoPoint

FlyAtPoint

Flies at a Point

FlyAwayFromObstacle

Turn Away From a Pt

Figure 17. UBF Tree of Fly to Goal Agent.

Name: FlyAwayFromObstacleBT
Description: Behavior Tree behavior which sets the destination of an agent away
from an obstacle point; the first child of the Selector Node forcing itself to be selected
when within 25km of the obstacle
Dependencies: The agent needs a mover object associated with it
Output: Route away from obstacle

82

Name: FlyAtPointBT
Description: Behavior Tree behavior which sets the destination of an agent to a goal
point if selected; always selected if nothing else is first
Dependencies: The agent needs a mover object associated with it
Output: Route to a goal point

Name: Root Node
Description: Maps an action object named ‘Route’ to cause an agent to follow the
provided WsfGeoPoint
Dependencies: Agent needs a mover object and this behavior needs an input with
‘Route’ named object and WsfGeoPoint:

Name Route
Priority n/a
Vote n/a
Int index of point to fly to
WsfGeoPoint A point to fly to

Output: Route to a point

Name: Emergence Normalize
Description: Takes a WsfGeoPoint and moves it to approximately 7 miles from the
agent along the same heading to ensure the point is not immediately assumed visited
Dependencies: Input with ‘Route’ named object and WsfGeoPoint:

Name Route
Priority n/a
Vote n/a
Int n/a
WsfGeoPoint A point to fly to

Output: Route to a point

Name Route
Priority n/a
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

83

Name: Emergence
Description: Averages two WsfGeoPoints based on vote value
Dependencies: Agent needs a mover object and this behavior needs an input with
‘Route’ named action object and WsfGeoPoint of the format:

Name Route
Priority n/a
Vote n/a
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

Output: Action object with a point to go towards of the format:

Name Route
Priority n/a
Vote affects weight of average attained; sug-

gest range 0-10
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

Name: FlyAtPoint
Description: Provides a WsfGeoPoint in the direction of the goal point
Dependencies: n/a
Output: Action object with a point to go towards of the format:

Name Route
Priority n/a
Vote 1
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

Name: FlyAwayFromObstacle
Description: Provides a WsfGeoPoint in the direction away from an obstacle point
Dependencies: n/a
Output: Action object with a point to go towards of the format:

Name Route
Priority n/a
Vote Dependent on agent name
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

4.3.2 Comparison: UBF agent versus BT agent.

In order to compare the behavior tree (BT) and Unified Behavior Framework

(UBF) agents the time between each agent was recorded by the tree reporting its

time when it reached the goal. It is worth noting that this results in a time resolution

84

of 10 seconds because each agent’s respective tree runs once per 10 seconds. Multiple

UBF agents are used to test and show the effects of different votes. The vote is applied

to an agent’s FlyAwayFromObstacle behavior by stripping the vote value off of the

name of the agent. Figure 18 shows the simulation running the described scenario

with 10 UBF aircraft and votes ranging from 0-10 and one BT aircraft. As a reminder

the Red aircraft are the UBF tree controlled aircraft and the number overlaid on the

aircraft is the vote value used, Blue is used for the behavior tree aircraft. The times

obtained are shown in Table 16.

Figure 18. Voting with 10 Aircraft UBF vs BT Scenario.

This table identifies multiple factors about behavioral emergence. The first is

85

Table 16. UBF vs BT Times to Reach Goal.

Agent Vote Time (s)

BT n/a 840

UBF 0 750
UBF 1 760
UBF 2 780
UBF 3 830
UBF 4 910
UBF 5 1040
UBF 6 1360
UBF 7 n/a
UBF 8 n/a
UBF 9 n/a

that with the wrong vote value a goal may never be achieved, either flying over the

obstacle or never reaching the goal. The second is that behavioral emergence, with

tuning, can achieve goals better, faster, than discrete behavior selection. Finally,

it reveals that static voting may not be the best solution, in that some violate the

objective area and some never achieve the goal.

4.4 Emergent Behavior based Implementation

The scenario simulates Boids, referring to bird like objects, software because Boids

is a classical example of emergent behavior [11]. The three key behaviors of Boids

are separation, alignment, and cohesion; when those behaviors combine, a swarming

behavior emerges. This is implemented nearly identically to the UBF tree from

Section 4.3, with only the leaf movement behaviors being replaced and the others

being renamed.

To implement this, a single UBF behavior is created for each and combined us-

ing a Fusion Vote GeoPoint arbiter. Then the resulting point is normalized, moved

out from under the agent to prevent AFSIM immediately assuming the point was

successfully reached. Finally, it is assigned as the active Route to follow in the

86

Map To Action code block. The resulting tree is shown in Figure 19. The actual

code used for each is included in Appendix 2.3.

Root Node

Assign Route

SwarmNormalize

Normalize GeoPoint

SwarmVector

Fusion Vote
GeoPoint

Alignment

Fly Parallel Others

Separation

Fly Away From Others

Cohesion

Fly Towards Others

Figure 19. Swarm Agent UBF Tree.

Similar formatting to 4.1 is used for these behaviors’ definitions, which are as

follows:

87

Name: Root Node
Description: Maps an action object named ‘Route’ to cause an agent to follow the
provided WsfGeoPoint
Dependencies: Agent needs a mover object and this behavior needs an input with
‘Route’ named object and WsfGeoPoint:

Name Route
Priority n/a
Vote n/a
Int index of point to fly to
WsfGeoPoint A point to fly to

Output: Route to a point

Name: Swarm Normalize
Description: Takes a WsfGeoPoint and moves it to approximately 7 miles from the
agent along the same heading to ensure the point is not immediately assumed visited

Dependencies: Input with ‘Route’ named object and WsfGeoPoint:
Name Route
Priority n/a
Vote n/a
Int n/a
WsfGeoPoint A point to fly to

Output: Route to a point

Name Route
Priority n/a
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

Name: SwarmVector
Description: Averages two WsfGeoPoints based on vote value
Dependencies: Agent needs a mover object and this behavior needs an input with
‘Route’ named action object and WsfGeoPoint of the format:

Name Route
Priority n/a
Vote n/a
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

Output: Action object with a point to go towards of the format:

Name Route
Priority n/a
Vote effects weight of average attained
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

88

Name: Alignment
Description: Provides a WsfGeoPoint in the direction of the average heading
respective of North East Down (NED) coordinate system of aircraft within 200km
Dependencies: Agent has a radar which reports enemy and friend tracks
Output: Action object with a point to go towards of the format:

Name Route
Priority n/a
Vote 1
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

Name: Separation
Description: Provides a WsfGeoPoint away from the center of mass of other aircraft
within 50km
Dependencies: Agent has a radar which reports enemy and friend tracks
Output: Action object with a point to go towards of the format:

Name Route
Priority n/a
Vote 2
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

Name: Cohesion
Description: Provides a WsfGeoPoint towards the center of mass of other aircraft
within 200km
Dependencies: Agent has a radar which reports enemy and friend tracks
Output: Action object with a point to go towards of the format:

Name Route
Priority n/a
Vote 1
Int 1 - Indicates 1st point to fly to
WsfGeoPoint A point to fly to

4.4.1 Boids Scenario Behavior Emergence Discussion.

The swarm UBF tree is applied to five aircraft with the UBF tree from Section

4.3 applied to one air craft. The swarm aircraft are blue and the red aircraft with a

number 0 over it is controlled by the UBF tree which seeks a goal from Section 4.3.

Four of the aircraft start on top of one another offset by altitude and the other two

start some distance away but still in radar range, shown in Figure 20.

89

Figure 20. Start of Swarm Scenario

As the scenario progresses swarm-like behavior presents itself. First the blue

aircraft group together as seen in Figure 21a. Then they turn to rejoin the goal

oriented aircraft, because while they grouped up, the goal oriented aircraft continued

on its mission, seen in Figure 21b. The swarm aircraft remain grouped with the goal

oriented aircraft and revolve around it for the remainder of the simulation, seen in 21c.

This is a very basic example of swarm behavior emerging from three simple behaviors

used simply as another example of this Unified Behavior Language’s capability to

create emergent behaviors.

4.5 Combined Scenario

The last scenario created explores the combination of Scenarios 2 and 3 for both

BTs and UBF trees identifying the differences in code reuse, tree extendability, and

maintainability. In both cases, trees of Scenario 2 are used as the starting point. Then

the trees, or behaviors, are augmented with the behaviors from Scenario 3. Thus, two

agents are created, one using a UBF tree and the other using a BT. The resulting

behavior of the two agents is similar.

The BT agent implements an identical tree to the Scenario 2 BT seen in Figure

90

Figure 21. Progression of Swarm Scenario.

(a) Swarm Starting to Group. (b) Grouped up swarm.

(c) End of Swarm Scenario.

16. However, the two leaf behaviors are augmented to include the behavior’s logic

from Scenario 3. This results in a behavior that flies to a point while swarming and

another behavior that flies away from the obstacle point while swarming. Thus, a

BT agent able to fly to a point, avoid obstacles, and swarm with other agents; the

execution of said agent is shown in Figure 22.

The UBF agent re-implements the structure from Scenario 3 with the leaf behav-

iors from Scenario 2. However, the UBF behaviors from Scenario 2 are added as a

single combined behavior to the same behavior the Boids behaviors are a descendant.

The combined behavior allows “FlyAtPoint” and “FlyAwayFromObstacle” behaviors’

votes to be scaled over the swarm behaviors’ votes. This is shown in Figure 24. The

voting method of the avoidance behavior is modified to increase the closer to the ob-

stacle the agent becomes. Thus, a UBF agent able to fly to a point, avoid obstacles,

91

Figure 22. Combined BT Agent.

and swarm with other agents shown in Figure 23.

Figure 23. Combined UBF Agent.

4.5.1 Behavior Tree Modification.

In modifying the BT from Scenario 2 with the logic from Scenario 3 multiple tasks

are required. The first task is to implement each of the Boids behavior’s concepts in

both of the BT’s behaviors. The second task is to merge the Boids concepts with one

another and with both behaviors’ original outputs. The third task is to troubleshoot

issues with creating custom logic combining these concepts. Finally, the last task is

to tune the balance of the various concepts.

92

4.5.2 UBF Tree Modification.

In augmenting the Scenario 3 UBF structure with the UBF behaviors from Sce-

nario 2, multiple tasks are required. The first task is to combine the Scenario 2

behaviors into a single one to allow their vote values to be scaled over the swarming

behaviors. This is done by creating a new behavior whose children are the Scenario 2

UBF behaviors and an execute code block which simply scales the votes of any action

it is given by 2. The second task is to change the vote mechanism of the obstacle

avoidance to scale based on distance instead of a static assignment. The final task is

to tune the various action recommendations.

4.5.3 Modification Comparison.

The BT implementation strategy creates issues. The first issue is the need for

expertise, from the second task requiring an understanding of each of the Boids out-

puts, the original behavior’s outputs, and how to combine them. The second issue is

the need to duplicate the same code in every behavior that is effected. These result

in the another issue, an increased risk of error. An increased risk of error requires the

third task, troubleshooting. This BT implementation strategy requires an in depth

understanding of the code, increased duplication of code, and increases the risk of

errors showing that the BT is difficult to extend and maintain new concepts.

The UBF tree does not share the implementation issues of extendability and

maintainability. This is because of the code reuse that UBF’s structure enables. The

UBF concept of an “arbiter” in combination with the decision based fields of the UBF

action objects, priority and vote, are designed to allow any number of behaviors to

provide their input for consideration. Hence, UBF behaviors and UBF arbiters are

created once and reused. This code reuse decreases the effort required to extend a

UBF tree.

93

The code reuse of UBF also increases the maintainability in comparison to a BT.

Adding a concept to a BT requires either a new behavior to accomplish the concepts

already implemented as well as the new concept or to augment every existing behavior

with the new concept. This scenario, which uses the second strategy of modifying

existing behaviors, is not as maintainable as UBF. This is because in UBF a single

location may be modified if an update is required of the new concept, whereas every

BT’s behavior implementing a concept must be modified. If the other strategy for

BTs is used, adding a single behavior re-implementing a BT’s existing concepts, then

an individual has a single point to modify for the new concept, however they now

have multiple sections of code to maintain for their old concepts. In a UBF tree

the original behaviors are also maintained in a single location. Hence, with either

BT extension strategy, updating code requires changes proportional the number of

behaviors in the BT; this demonstrates the difficulty of maintaining a BT over that

of a UBF tree.

4.6 Summary

This chapter presents multiple scenarios showing that UBF can effectively imple-

ment behavioral emergence in AFSIM. The first scenario acts as a proof of concept

that UBF can work and replace the existing intelligent agent controller in AFSIM.

In order to mitigate the extra work UBF requires, a standardized interface is estab-

lished. The necessity for tuning behavioral emergence is shown in the second scenario.

Behavioral emergence is expressly displayed by the third scenario’s implementation

of a classic behavioral emergence technique for swarming. The last implementation

demonstrates the improved maintainability and extendibility from UBF’s code reuse

compared to a BT. With these studies one can see UBF is capable of implementing

behavioral emergence in AFSIM.

94

Root Node

Assign Route

CombineNormalize

Normalize GeoPoint

CombineVector

Fusion Vote
GeoPoint

Alignment

Fly Parallel Others

IncreaseVote

Double All Votes

Separation

Fly Away From Others

Cohesion

Fly Towards Others

FlyAtPoint

Flies at a Point

FlyAwayFromObstacle

Turn Away From a Pt

Figure 24. Combined UBF Agent Tree.

95

V. Results

In Chapter III the Advanced Framework for Simulation, Integration, and Model-

ing’s (AFSIM) scripting language is extended to include the Unified Behavior Frame-

work (UBF). Due to the fact that UBF is able to implement emergent behaviors, this

extension must also demonstrate its ability to do so in AFSIM. Applications of this

extension are examined through multiple scenarios in Chapter IV to demonstrate the

ability to implement this behavioral emergence.

This chapter examines the results of the scenarios that were created and what

traits each scenario exemplifies in extending AFSIM with UBF. Furthermore, the

demonstrated advancements are discussed to explore the mapping of other frame-

works’ concepts to this language. Additionally, an inspection of the advantages and

disadvantages of this new platform-independent UBF implementation is conducted

because past implementations [6, 7, 20] of UBF were static versus the motors of their

agent.

5.1 Scenario Results Summary

In order to examine the effectiveness of UBF in AFSIM, four scenarios are used.

The first scenario is a proof of concept showing the UBF behaviors are able to replace

a behavior tree (BT) in the AFSIM. The second scenario explores the effect of behav-

ioral emergence and the ability to tune it. The third scenario implements a classical

example of behavior emergence. The fourth scenario is a comparison of the effort to

combine scenario’s two and three for BTs versus UBF trees. With these case studies

the ability of the UBF plug-in to implement behavioral emergence is displayed.

The first scenario is a proof of concept because it successfully replaces a behavior

tree in AFSIM. A scenario is utilized from the AFSIM analyst training course with

96

the BT replaced by a UBF tree and the UBF behaviors are derived from the BT

behaviors. The result is that all aircraft on the opposing team are destroyed as

shown by Figure 25. This is considered as a successful proof of concept because all

of the same aircraft are destroyed. The exact result of missiles used, fuel used, and

other details differ slightly because of commands that are available to the BT code

blocks, but cause bugs in the plug-in code blocks. Fixing this issue is discussed in

Section 6.2.

Figure 25. End of Scenario BT to UBF.

The second scenario examines the benefit and need to tune the emergence of

behaviors. It does this by presenting 10 aircraft with different votes and comparing

them to a similar behavior tree controlled aircraft and to one another. The result

shown in Table 16 identifies that a vote of 2 provides the optimal emergent behavior

for this scenario. However, the combination of these behaviors may have a different

vote value if the initial conditions are changed, such as adding more obstacles. In

that case it would be prudent to scale the vote value based on distance. The table

also shows the emergent behavior is able to get to the objective faster than the BT

97

agent while still avoiding the obstacle. Figure 26 shows that the path of the BT

agent, blue, is more jagged versus the smooth path of the UBF agent, red with a ‘2’

over it, granted this is a subjective statement and that is why Table 16 is also used

for comparison.

Figure 26. BT Agent vs UBF agent Smoothness.

The third example is another proof of concept showing UBF in AFSIM is able

to explicitly create an emergent behavior. This is based on a classical example of

behavior emergence. The classical example, Boids [11], details how to create the

emergent behavior of swarming and this implementation shows how literally that

technique maps to UBF. Only the three tenet behaviors of Boids are implemented,

Separation, Cohesion, and Alignment. Next the established techniques from the

second scenario are reused to combine the action recommendations. Then a swarming

behavior emerges. This is a subjective statement and it not very easily shown via

static images, however Figure 20 and 21 display the progression of the scenario. These

images show the agents grouping with one another, maintaining alignment after they

are grouped, maintaining a minimum distance to one another, and also maintaining

their group even though the red aircraft with a ‘0’ over it is controlled by the agent

from the second scenario and ignoring the other agents.

The last scenario examines the maintainability and extendability of existing UBF

and BT structures with new concepts. The behavior of both agents when employed

98

alone and with other agents acted similarly by pursuing the goal while avoiding the

obstacle and flying with the other aircraft to do so. The BT implemented requires

custom code which is duplicated proportional to the number of behaviors that are

affected. This increases the risk of errors and effort to extend and maintain a BT.

The UBF structure’s resolution technique compensates for those issues by enabling

increased code reuse. In both cases there is a need to balance the old behavior with

the new behavior. However, this exposes the fact that maintaining a strategy in a BT

has an affect proportional to the number of behaviors this strategy effects. Whereas,

in a UBF implementation a single simple behavior can be used to group, scale, and

reuse other behaviors to include the new strategy.

These scenarios show a proof of concept, behavioral tuning, replication of a classic

emergent behavior, maintainability, and the extensibility as capabilities of UBF in

AFSIM. Thus, via these case studies the capability of behavioral emergence is shown

in this implementation of the Unified Behavior Framework to AFSIM.

5.2 Coverage of other Languages and Frameworks Concepts

The first investigatory question is how the commands in this Unified Behavior

Framework are able to cover the concepts observed in other intelligent agent con-

trollers. This is a secondary goal because adoption of concepts from other frameworks

and languages does not necessarily directly affect behavioral emergence. Adopting

these secondary concepts has the purpose of allowing the UBF behaviors to be com-

patible with other concepts in the artificial intelligence community and to help find

compatible methods to increase the efficiency of the UBF. Table 17 presents the

concepts that were examined, if they were implemented, partially implemented, not

implemented, or not compatible with the UBF structure.

In regards to Table 17, items 5-9 and 16 are the commands used in dynamic

99

Table 17. Concept Implementations

Concept Implementation

1. Pre-Condition Check YES
2. Priority YES
3. Voting YES
4. Name YES
5. Expected Effects Partial
6. Required Data Partial
7. Action Settings Partial
8. Initial Conditions Partial
9. Goal Achieved Partial
10. Behavior Library Yes
11. Parameters Not Implemented
12. Mental vs Motor Not Compatible
13. Global & Persistent Memory YES
14. Action Recommendations YES
15 Children YES
16. Reflective Access Partial
17. Arbitration Methods YES
18. Signature Matching Partial
19. Previous Child Not Compatible
20. Exit Conditions Not Compatible
21. On Entry Not Compatible
22. On Exit Not Compatible
23. Initialization YES
24. Messaging Interface Not Implemented
25. Synchronous Flag Not Implemented
26. Frequency YES
27. Activate/Deactivate Partial
28. Execution Time Limits Not Implemented
29. Leaf/Composite Behavior Flags Not Implemented

sequencing and planning of behavior structures. These are declared as partially im-

plemented because the means of accessing them is inefficient, by behavior name then

by their field. More functions should be created to dynamically share the fields be-

tween parent and child behaviors and to query for UBF behaviors by those fields

directly.

Parameter lists, signature matching, and leaf vs composite behavior flags, items

100

11, 18, 29 respectively, are not implemented, however they have benefits that are

compatible with this implementation. Parameter lists allow for increased re-usability

of behaviors and leaf vs composite behavior flags allow for decreased execution time

of the scenario via behavior output reuse, respectively. In Section 6.2, suggestions are

made how to implement them both. The suggestion for implementing parameter lists

is akin to command line argument usage, providing a dynamic vector of parameters

to behaviors. This is not compatible with signature matching. If further work is done

to implement parameters and/or dynamic sequencing components, then signature

matching should be re-examined because those concepts provide many aspects that

can be part of a behavior’s signature.

The other three concepts that were not implemented are for a variety of reasons;

these are a messaging interface, execution time limits, and synchronization flags.

The messaging interface is not implemented because it provides a simple convenience

that can be replicated by code within an execute code block of a UBF behavior.

The execution time limit is not implemented because the scope is for discrete event

simulations. Synchronization flags are not used because AFSIM provides various

other teaming techniques and UBF behaviors themselves allow any team oriented

behaviors to submit their action recommendations if desired.

Thus, users of this implementation or readers who may try to recreate their own

version of a UBF language should consider not only the items that were implemented,

but also the items that were partially or not implemented. This is because other im-

plementations may provide compatible optimizations and capabilities that the original

goal may not.

101

5.3 Platform Independent UBF Discussion

The second advancement demonstrated through this thesis regards the platform

independence of this UBF implementation. The platform independent implementa-

tion of UBF refers to the action recommendations having various generic value fields

within them, being the int, double, WsfRoute, WsfTrack, WsfGeoPoint, and string

value fields. This is in comparison to other UBF implementations that have action

objects with fields directly related to motor settings of the agent to which they are

applied [6, 7, 20].

First, a disadvantage is forcing users to implement a Map To Action code block

when other UBF implementations do this for the user. This can be mitigated by

establishing reusable Map To Action code blocks. This does lead to the need for

teams to establish and share the input and output requirements for their behaviors.

When a behavior is not designed specifically for the input requirements of another, a

user may add an intermediate node to translate the values to the required format.

While a user may have more work initially, they are also freed from a defined

subset of possible outputs. This freedom allows compatibility for custom messages

to be used between behaviors. It allows for future motors or effectors to be added to

an agent that can be utilized and planned for by UBF structures without needing to

re-compile the framework’s or plug-in’s code to add new fields. Platform independent

action recommendations also allow generic actions to be used so identical behaviors

can be used on completely different platforms, i.e. a path finding behavior can be used

on a tank or boat and only need a small translation behavior to be added between it

and the respective Map To Action code block. This is an advantage over other UBF

implementations because they use predefined action objects.

It is worth noting that this implementation of UBF is not completely independent

of the sensors on the platform. AFSIM mitigates this fact by providing generic

102

components with which platforms may have to interface. An example of this is a

“master track list” that behaviors may use. A user should use the master track list

instead of trying to access a radar component directly because another platform may

implement the radar with different capabilities, by a different name, or not at all.

5.4 Summary

This chapter examines the results of the case studies and discusses the demon-

strated advancements of this implementation. UBF in AFSIM effectively replaces

behavior trees and effectively creates emergent behaviors and effectively provides the

ability to tune them. This extension implements features of many other frameworks,

however there are concepts not implemented that would be beneficial in a future

iteration of this work. Finally, the platform independent implementation of UBF

causes additional work initially for intelligent agent creators, it allows implementa-

tion of behaviors on vastly different agents with simple translation behaviors, and it

detaches the UBF plug-in code from the implementation of new effectors. With these

discussions one can see UBF in AFSIM is able to provide behavioral emergence, the

concepts currently implemented and those that the plug-in may still benefit from,

and the benefits and difficulties of this platform independent implementation of the

UBF.

103

VI. Conclusions

The Advanced Framework for Simulation, Integration, and Modeling (AFSIM)

provides various tools for intelligent agent creation, but it does not explicitly provide

the means for behavioral emergence. This thesis demonstrates the use of a plug-in

built on top of the Unified Behavior Framework (UBF) expressly to provide the use

of behavior emergence to AFSIM via an extension of the scripting language. This

chapter reiterates the benefits of using UBF in AFSIM and discusses the future efforts

that this thesis brings to light.

6.1 Recommendations

The AFSIM program office should look into a slight modification to the current

behavior tree (BT) system to increase its capabilities and intuitiveness. In researching

various other BT implementations [5, 18] the ‘running’ return type for behavior node

was observed, whereas AFSIM only has ‘true’ and ‘false’ (failure) for the return types

of a behavior node’s pre condition code block. The addition of this flag increases

intuitiveness by reducing the reliance of behaviors on one another to check criteria

relating to them and depending on the node to which they are a child. This mod-

ification is backwards compatible with previously created scripts because the other

return types still function the same, only newly created behavior trees that implement

it would need consider it.

6.2 Future Work Discussion

The implementation of UBF reveals additional commands that are needed to

fully implement some of the originally intended concepts and new ideas on how to

implement commands that are not included. The initial concept to be expanded

104

on is the ability to sequence and dynamically construct UBF trees. The included

commands merely modify (add or remove) the children of a behavior from within

that behavior and examine the various fields inspired by Duffey [24]. This should be

expanded to allow external access to the UBF tree; a possible solution is to allow

another tag in the construction of the UBF tree that gives a name to the position it

is placed at and external code could then interact with the UBF tree by modifying

named positions in the tree.

The next concept not implemented is parameters for behaviors similar to function

calls in many programming languages. This is a powerful concept because it allows

UBF tree builders to directly add specific functionality without having to modify

the underlying code. Also, this generalization of behaviors allows re-use of the same

behavior for multiple tasks. With the level of knowledge this thesis has provided it

is apparent that this could be implemented via a parameter list after the behavior

name in the UBF tree and accessed inside the behavior similar to command line

arguments in the programming language C. This does require a behavior creator to

add additional checks for properly formatted and existing data to avoid run time

errors, but it is possible. A more graceful and standard method is no doubt possible

if done by a veteran AFSIM developer.

Another concept that provides an optimization is the by-product of the differ-

entiation of leaf and composite behaviors. This by-product is the ability to reuse

behavior outputs without re-computing the entire behavior if included in multiple

places in a single UBF tree. This is a by-product of the leaf vs composite behavior

concept because a leaf is always able to be reused whereas a composite behavior may

not always be reused, but a composite may sometimes be reused. Hence, the true

concept may be applied to a UBF behavior by a tag indicating the output is reusable,

these tags being tracked by a root node, and the tagged nodes remembering their

105

output if called again in the same iteration. This optimization could help a real time

implementation of UBF maintain its reactivity.

Another change for real time implementation is to re-implement how the active

UBFBehavior and active UBFArbiter is accessed. Currently the active UBFBehavior

and UBFArbiter expose their contents through singleton objects, global static vari-

ables, for each. The new commands implemented simply access those variables; this

is not thread safe and could also cause issues if AFSIM runs in real time. To fix this

an expert AFSIM developer needs to change the commands to point to the calling

UBFBehavior or UBFArbiter instead of the global static variable used. This work

around was used due to the complexity of integrating with the AFSIM code.

This implementation has a couple of other issues due to the complexity of in-

tegrating with the AFSIM code that should be fixed for future work. The first is

an inability to access some functions of AFSIM that are very useful inside the new

code blocks, i.e. drawing shapes and accessing the global simulation object. Working

with the AFSIM help desk has alleviated some of the issues but it appears there is

an unknown nuance with the inherited traits that may need to be manually set. A

suggested approach to attempt to fix this is to change the type of processor that is

being used as the parent and eventually to implement UBF behaviors as their own

entities, not as processor, similar to how behavior tree nodes are currently done in

AFSIM.

The next issue is in regards to the action object’s value fields. The WsfRoute

object loses its details when passed up the tree. Because of this difficulty, a generic

object pointer was not implemented. However, implementing a generic object pointer

could increase the usefulness of action objects. This could be from passing complex

data sets as vectors or passing any other object in AFSIM as a value. This change

could allow for increased complexity in behavior communication.

106

Even though the current implementation could be improved by various commands

and fixes there are other ways to continue researching increases to the capabilities of

AFSIM via the current implementation. This starts with generating a large library

of UBF behaviors. This allows for further exploration of the behavioral emergence

landscape and could be directly useful to AFSIM analysts simulating real behaviors

of pilots. The current implementation can also expose the vote fields to artificial

intelligence (AI) learning techniques such as simulated annealing or neural networks

that could search for and learn the optimal vote values or strategies for UBF trees in

given scenarios, thus, teaching an agent how to fly missions.

A final recommendation to modify is a re-examination of the Frequency tag. This

is because the current implementation allows a behavior to execute at a max speed

defined by the Frequency with no output being produced in the interim. A possible

way to change this would be to store the action outputs and reuse them whenever

called in the interim, providing an efficiency increase.

6.3 Conclusions.

The plug-in based on the UBF provides the means to effectively implement be-

havioral emergence in the AFSIM. This is shown through 4 case studies of scenarios

shown in Chapter IV. These scenarios show proof of concept that a UBF tree may

replace a BT in AFSIM, that via tuning a UBF agent can achieve a goal faster, slower,

or worse than a BT, that simple behaviors can create an emergent behavior, and that

UBF improves maintainability and extendability through code reuse. This satisfies

the main objective of this thesis.

This UBF implementation includes the concepts from various frameworks so that

it is more than just a container around UBF. This is examined in Chapter III and

Section 6.2. This is accomplished to provide the maximum number of capabilities

107

to users. Maximizing capabilities prevents users from abandoning it for another that

may have the components they are familiar with or need and it provides optimizations

wherever possible. There are concepts UBF can benefit from that were partially

or not implemented. These concepts are integration with sequencers and planners,

parameterizing behaviors for increased re-usability, and identifying behaviors as static

so the tree can be optimized to reuse a behaviors output in multiple locations without

recalculation being required.

Other implementations of UBF use action recommendation objects with fields

directly related to the motors of a platform. This allows a user of the framework

to ignore mapping the actions to motors in the root of the tree because a developer

already accomplished this for them. This UBF implementation uses generic action

recommendations which force users to map them to outputs at the root of the tree.

This allows for platform independence which increases the re-usability of behaviors

and the ability to implement effectors which have not been invented yet.

6.4 Significance

The goal of any intelligent agent controller is to simulate intelligence in the agent

on which it is implemented. This thesis provides a control structure that increases

the complexity of behaviors that are possible on an agent without causing a large

increase in complexity of the controller structure. This is done via the emergence of

behaviors.

In the AFSIM, increasing the complexity of an agent typically involves an analyst

making a new behavior which overlaps with other behaviors. This is a duplication of

effort. Also, if a new strategy or tactic is invented then new behaviors are needed or

any affected behavior requires modification. Those behaviors overlap the situations

they check for with other previously created behaviors. The same effects can be

108

obtained with emergent behaviors via tuning or adding in the new tactics, without

overlapping considerations, which affect the resulting behavior based on their voting

mechanisms.

Behavioral emergence in AFSIM can save money and analysts’ time by reducing

the time to create new behaviors and simulate new strategies. It can allow new

capabilities that were not possible in BTs. Increased capabilities can increase the

significance and confidence in the results of scenarios by possibly bringing them closer

to reality.

6.5 Summary

This thesis implements UBF as a dynamic link library, a plug-in, for AFSIM

providing the capability of behavioral emergence. This allows complex behaviors to

emerge from simple components. The extension considers other implementations in an

attempt to maximize the capabilities. However, not all of the compatible concepts are

included, but these concepts are identified for any future implementation if desired.

Finally, this thesis provides a new look at the action recommendation concept seen in

the UBF. This UBF implementation creates more initial work for a user but provides

them greater flexibility and detaches the action object from needing to be updated

every time a new motor effector is added to AFSIM platforms.

109

Appendix A. Implementation C++ Code

This appendix includes the various C++ files that are used to create the Unified

Behavior Language. The C++ files used to add commands to the AFSIM language

and register the plug-in are omitted because those files simply show a mapping of

function names to call functions in their respective classes, which are included.

1.1 Header Files

The C++ header files follow this page.

110

C:\Users\ludam\Desktop\source\InputTree.hpp 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

#pragma once
#include "WsfVariable.hpp"
#include <vector>
class InputTree
{
public:
 std::vector<InputTree*> mChildren;
 InputTree() {};
 InputTree(std::string behaviorName):mName(behaviorName)
 {

 };
 ~InputTree() {};
 WsfVariable<WsfStringId> GetName() { return mName; }
private:
 WsfVariable<WsfStringId> mName;

};

.

111

C:\Users\ludam\Desktop\source\UBFAction.hpp 1
1
2
3
4
5

6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30

31

32
33
34
35
36
37
38
39
40
41
42
43

/**
* @title UBFAction.hpp
* @Author Jeff Choate
* @email Jeff.lee.choate@gmail.com or Jeffrey.choate@us.af.mil
* @description This file defines the UBFAction class for Capt Jeffrey Choate's

* Thesis work at the Air Force Institute of Technology, 2015-2017.
* @usage A UBFAction object is used as a communication device for UBFBehaviors
 and UBFArbiters.

* @Modified: 28 Jan 2017
* @Change_Log:
* 28 Jan 2017: Comments
*/
#ifndef UBF_ACTION_HPP
#define UBF_ACTION_HPP

#include <string>
class WsfRoute;
class WsfGeoPoint;
class WsfTrack;

class UBFAction
{
public:
 ~UBFAction();

 UBFAction();
 UBFAction(std::string oName, int oPriority, int oVote, std::string

oValStr);
 UBFAction(std::string oName, int oPriority, int oVote, WsfRoute *

oValRoutePtr);
 UBFAction(std::string oName, int oPriority, int oVote, int oValInt);
 UBFAction(std::string oName, int oPriority, int oVote, double oValDbl);
 UBFAction(std::string oName, int oPriority, int oVote, WsfGeoPoint *

oValWsfGeoPointPtr);
 UBFAction(std::string oName, int oPriority, int oVote, WsfTrack *

oValWsfTrackPtr);
 UBFAction(UBFAction * oUBFActionPtr);

 //Getters for all traits
 int GetSourceID();
 std::string GetName();
 int GetPriority();
 int GetVote();

 //Getters for all individual values
 std::string GetValueString();
 WsfRoute * GetValueWsfRoutePtr();
 int GetValueInt();

.

112

C:\Users\ludam\Desktop\source\UBFAction.hpp 2
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

 double GetValueDouble();
 WsfGeoPoint * GetValueWsfGeoPointPtr();
 WsfTrack * GetValueWsfTrackPtr();

 //Setters for traits
 void SetName(std::string oName);
 void SetPriority(int oInt);
 void SetVote(int oInt);

 //Setters for all individual values
 void SetValueString(std::string oValString);
 void SetValueWsfRoutePtr(WsfRoute * oValWsfRoutePtr);
 void SetValueInt(int oValInt);
 void SetValueDouble(double oValDouble);
 void SetValueWsfGeoPointPtr(WsfGeoPoint * oValWsfGeoPointPtr);
 void SetValueWsfTrackPtr(WsfTrack * oValWsfTrackPtr);

private:

 //traits of an Action
 int sourceID = -1;
 std::string actionName = "ERROR NEVER INITIALIZED";
 int priority = -1;
 int vote = -1;

 //Possible Values
 std::string valueString = "ERROR NEVER INITIALIZED";
 WsfRoute * valueWsfRoutePtr = nullptr;
 int valueInt = -1;
 double valueDouble = -1.0;
 WsfGeoPoint * valueWsfGeoPointPtr = nullptr;
 WsfTrack * valueWsfTrackPtr = nullptr;
};

#endif

113

C:\Users\ludam\Desktop\source\UBFActionList.hpp 1
1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27

28

29

30

31

32

33

34

35

36

37

/**
* @title UBFActionList.hpp
* @Author Jeff Choate
* @email Jeff.lee.choate@gmail.com or Jeffrey.choate@us.af.mil
* @description This file defines the UBFActionList class for Capt Jeffrey
Choate's

* Thesis work at the Air Force Institute of Technology, 2015-2017.
* @usage A UBFBehaviors and UBFArbiters inherit this device.
* @Modified: 28 Jan 2017
* @Change_Log:
* 28 Jan 2017: Comments
*/
#ifndef UBF_ACTIONLIST_HPP
#define UBF_ACTIONLIST_HPP

#include <string>
#include <vector>
class UBFAction;

class UBFActionList
{
public:
 UBFActionList();

 //Note: overriden by UBFArbiter ,so they do not add to their inherited
mActions vector

 virtual void Add_Action(UBFAction * newAction);

 //various get methods to retrieve actionLists from the this actionList's
vector of actions

 UBFActionList * Get_Actions_By_Exact_Name(std::string byName);//returns
all with a specific name

 UBFActionList * Get_Actions_By_partial_Name(std::string byName);//returns
all with a specific string in the name

 UBFActionList * Get_Actions_By_Exact_Priority(int byPriority);//returns
all by a specific priority

 UBFActionList * Get_Actions_By_Min_Priority(int byPriority);//returns all
by a specific priority

 UBFActionList * Get_Actions_by_type_String();//returns all actions which
were assigned a string

 UBFActionList * Get_Actions_by_type_WsfRoute();//returns all actions of
type WsfGeoRoute

 UBFActionList * Get_Actions_by_type_Int();//returns all actions which were
 assigned an int

 UBFActionList * Get_Actions_by_type_Double();//returns all actions which
were assigned a double

 UBFActionList * Get_Actions_by_type_WsfGeoPoint();//returns all actions of
 type WsfGeoPoint

 UBFActionList * Get_Actions_by_type_WsfTrack();//returns all actions of

.

114

C:\Users\ludam\Desktop\source\UBFActionList.hpp 2

38

39
40
41

42

43

44

45

46
47
48

49
50
51

52
53
54
55
56

type WsfTrack, will return an empty ActionLists object if none are there
 UBFActionList * Get_Actions_Unique_Top_Priorities(); //returns one action

for each unique name with the highest priority

 //Iterator/Array inspired methods to retrieve UBFAction objects
 UBFAction * First();//returns the first UBFAction * from the vector, null

if vector is empty
 UBFAction * Last();//returns the last UBFAction * from the vector, null if

 vector is empty
 UBFAction * Next();//returns the next UBFAction * from the vector each

subsequent call, returns null if at the end
 UBFAction * ByIndex(int i);//returns the UBFAction * at the designated

index (zero based array syntax), returns null if out of range
 void Next_Restart();//sets the iterator used by Next() back to the start

to allow a user to restart searches using the same ActionList object
 int Size();//returns the number of UBFActions in this UBFActionList object

 bool Erase_Action_By_Name(std::string oName);//removes one Action of the
specified name from the actionsList of this object

protected:
 std::vector<UBFAction*> mActions;//Storage device for the UBFAction

objects this class is for
 int iteratorForNextMethods = 0;//Used when treating this class as a list
};

#endif

115

C:\Users\ludam\Desktop\source\UBFArbiter.hpp 1
1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

/**
* @title UBFArbiter.hpp
* @Author Jeff Choate
* @email Jeff.lee.choate@gmail.com or Jeffrey.choate@us.af.mil
* @description This file defines the UBFArbiter class for Capt Jeffrey
Choate's

* Thesis work at the Air Force Institute of Technology, 2015-2017.
* @usage This object is used as a mechanism to store a script which
* makes decisions between UBFAction objects.
* @Modified: 28 Jan 2017
* @Change_Log:
* 28 Jan 2017: Comments
*/
#ifndef UBF_ARBITER__HPP
#define UBF_ARBITER_HPP

//include because an Arbiter IS-A Processor and IS-A UBFActionList in this
implementation

#include "processor\WsfProcessor.hpp"
#include "UBFActionList.hpp"

//forward declarations of object types I hold pointers to
class UtScript;
class UBFAction;
class UBFBehavior;
class UBFArbiter:public WsfProcessor,public UBFActionList
{
public:
 //Override-Now modifies the vector which is passed forward and not the
 //inherited vector
 void Add_Action(UBFAction * newAction);

 UBFArbiter(WsfScenario& aScenario);
 UBFArbiter(const UBFArbiter& oArbiter);

 static UBFArbiter * getInstancePtr();
 static void setInstancePtr(UBFArbiter * ptr);

 virtual UBFArbiter* Clone() const
 {
 return new UBFArbiter(*this);
 }
 ~UBFArbiter();
 std::vector<UBFAction*> Process(std::vector<UBFAction*> inputActions);
 bool ProcessInput(UtInput& aInput);
 void SetContext(WsfScriptContext* newContextPtr);
 std::vector<UBFAction*> newActions;
private:

.

116

C:\Users\ludam\Desktop\source\UBFArbiter.hpp 2
48

49
50

51
52

53

54
55
56
57
58
59

 static UBFArbiter * staticUBFArbiterPtr; //used in order to allow script's
 to find behaviors and find the active behavior

 //Attributes
 UtScript* mExecuteScriptPtr;//The script this class is built

around
 WsfScriptContext* mContextPtr; //ptr associating PLATFORM and script
 UBFBehavior * mBehavior = nullptr;//behavior this Arbiter is assigned

to...not used yet
 UtScript * mProcessScriptptr = nullptr; //this holds the script which will

 execute when
 // Inherited via WsfProcessor
};

#endif

117

C:\Users\ludam\Desktop\source\UBFBehavior.hpp 1
1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

/**
* @title UBFBehavior.hpp
* @Author Jeff Choate
* @email Jeff.lee.choate@gmail.com or Jeffrey.choate@us.af.mil
* @description This file defines the UBFBehavior class for Capt Jeffrey
Choate's

* Thesis work at the Air Force Institute of Technology, 2015-2017.
* @usage This object is used as a mechanism to store scripts and various
* other traits of a behavior and control execution of said behaviors
* @Modified: 28 Jan 2017
* @Change_Log:
* 28 Jan 2017: Comments
*/
#ifndef UBF_BEHAVIOR_HPP
#define UBF_BEHAVIOR_HPP

#include <string>
#include <vector>
//include because an Behavior IS-A Processor and IS-A UBFActionList in this
implementation

#include "processor\WsfProcessor.hpp"
#include "UBFActionList.hpp"

//forward declarations of object types I hold pointers to
class UBFAction;
class UBFArbiter;
class UtScript;
class InputTree;

class UBFBehavior:public WsfProcessor, public UBFActionList
{
public:
 //getter for singleton way to access currently operating behavior
 static UBFBehavior * getInstancePtr();
 //setter for singleton way to access currently operating behavior
 static void setInstancePtr(UBFBehavior * ptr);

 UBFBehavior(WsfScenario& aScenario);
 UBFBehavior(const UBFBehavior& mUBFBehavior);
 virtual UBFBehavior* Clone() const
 {
 return new UBFBehavior(*this);
 }

 //Assigns pointers based on strings found during the ProcessInput call
 virtual bool Initialize(double aSimTime);
 ~UBFBehavior();
 //parses script into values for this UBFBehavior

.

118

C:\Users\ludam\Desktop\source\UBFBehavior.hpp 2
48
49

50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 bool ProcessInput(UtInput& aInput);
 bool BuildOwnBehaviorTree(WsfScriptContext * newScriptContextPtr, int

depthOfTree);
 //Called by AFSIM code for ROOT behavior only, Used to
 //call mExecute of a behavior
 void Update(double aSimTime);

 //handles this behaviors execution; basically calls its execute script and
 passes

 //its recommended actions up to a parent arbiter/behavior
 std::vector<UBFAction*> mExecute(int depth, double aSimTime);

 WsfScriptContext* GetContextPtr();
 void SetContextPtr(WsfScriptContext* newContextPtr);
 void SetParentContextPtr(WsfScriptContext * newContextPtr);
 bool Add_Behavior(std::string newBehaviorName);
 bool Add_Behavior(UBFBehavior * newChild);
 bool Remove_Behavior(std::string deleteName);

 //Sequencer/Planner used methods
 UBFBehavior * Find(std::string oBehaviorName);
 void Add_Adder_Post_Condition(std::string newCondition);
 void Add_Remove_Post_Condition(std::string newCondition);
 void Add_Action_Setting(std::string newCondition);
 void Add_Required_Data(std::string newCondition);
 void Add_Initial_Condition(std::string newCondition);
 void Set_GoalAchieved(std::string newGoal);

 bool Adder_Post_Condition_Exists(std::string oCondition);
 bool Remove_Post_Condition_Exists(std::string oCondition);
 bool Action_Setting_Exists(std::string oSetting);
 bool Required_Data_Exists(std::string oData);
 bool Initial_Condition_Exists(std::string oCondition);

 std::string Get_Adder_Post_Condition_byIndex(int index);
 std::string Get_Remove_Post_Condition_byIndex(int index);
 std::string Get_Action_Setting_byIndex(int index);
 std::string Get_Required_Data_byIndex(int index);
 std::string Get_Initial_Condition_byIndex(int index);
 std::string Get_GoalAchieved();

 int Adder_Post_Condition_Size();
 int Remove_Post_Condition_Size();
 int Action_Setting_Size();
 int Required_Data_Size();
 int Initial_Condition_Size();
private:
 //This variable controls how frequently the behavior's
 //execute/Arbiter blocks may be called; default is always call.

119

C:\Users\ludam\Desktop\source\UBFBehavior.hpp 3
95
96
97
98
99

100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141

 //May not be called more frequently than the root update_interval.
 double executeFrequency = -1;
 //This variable works with the executedFrequency to control
 //how often a behavior may be executed.
 double timeLastExecuted = 0;
 //Flag controlling if time of code block execution is reported
 bool debug_time = false;
 //stores strings representing the environmental initial conditions
 std::vector<std::string> mInitialConditions;
 //stores strings representing the motors this behavior effect
 std::vector<std::string> mActionSettings;
 //stores strings representing the data required to be available to
 //this behavior for it to execute: Radar, or processor with name task -

mgr...
 std::vector<std::string> mRequiredData;
 //stores strings representing the tasks or restraints this behavior
 //adds to a platform: i.e. bomb_doors_are_open
 std::vector<std::string> mPost_Conditions_Add;
 //stores strings representing the tasks or restraints this behavior
 //removes from a platform: i.e. bomb_doors_are_closed
 std::vector<std::string> mPost_Conditions_Remove;
 //stores string representing the goal of this behavior
 std::string mGoalAchieved;

 //used in order to allow scripts to find the active behavior
 static UBFBehavior * staticUBFBehaviorPtr;
 void ExecuteMapToOutputs();
 //default value is arbitrary, used to prevent loops in trees
 //i.e. child being its own parent
 int maxTreeDepth = 30;
 UtScript* mMapToActionScriptPtr;
 UtScript* mExecuteScriptPtr;
 UtScript* mPreConditionScriptPtr;
 WsfScriptContext* mContextPtr;
 //tracks if InputTree was used to build UBFBehavior tree of children

pointers
 bool mbehaviorTreeBuilt = false;
 //tracks if an actual pointer was assigned to Arbiter
 bool mArbiterAssigned = false;
 bool AssignMyArbiter(WsfScriptContext* newScriptContextPtr);
 bool AddChildrenToChildren(InputTree* parent, UBFBehavior* tempBehavior,
 WsfScriptContext * newScriptContextPtr, int depthOfTree);
 bool StoreChildren(InputTree * parentPtr, UtInput & aInput);
 WsfSimulation * GetSimulation();
 UtScriptContext * GetScriptAccessibleContext();
 const char * GetScriptClassName();
 WsfPlatform * OwningPlatform();
 //stores children names between ProcessInput state and Initialize stage
 std::vector<InputTree*> mProcessInputChildren;

120

C:\Users\ludam\Desktop\source\UBFBehavior.hpp 4
142
143
144
145
146
147
148
149
150
151

 //stores Arbiter name between ProcessInput stage and Initialize stage
 WsfVariable<WsfStringId> mArbiterName;
 //pointer to UBFArbiter used by this UBFBehavior
 UBFArbiter * Arbiter = nullptr;
 //holds list of UBFBehavior pointers this UBFBehavior is parent to
 std::vector<UBFBehavior*> mUBFChildren;
};

#endif

121

1.2 C++ Files

The C++ code files follow this page.

122

C:\Users\ludam\Desktop\source\UBFAction.cpp 1
1
2
3
4
5
6
7
8
9

10

11

12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#include "UBFAction.hpp"
#include <iostream>
#include "mover/WsfRoute.hpp"
#include "WsfGeoPoint.hpp"
#include "WsfTrack.hpp"

UBFAction::~UBFAction()
{
 //All instances of UBFAction use the UtScriptRef::cManage flag when

created to allow AFSIM to manage them
 //It is assumed that subobjects of UBFActions are created in AFSIM script

and are hence also managed by AFSIM
 //if those objects are cloned via the UBFAction copy constructor then it

is unknown if AFSIM continues to
 //manage those objects or not: these as WsfRoute, WsfTrack, WsfGeoPoint.
}

UBFAction::UBFAction()
{

}

UBFAction::UBFAction(std::string oName, int oPriority, int oVote, std::string
oValStr)

{
 actionName = oName;
 priority = oPriority;
 valueString = oValStr;
 vote = oVote;
}

UBFAction::UBFAction(std::string oName, int oPriority, int oVote, WsfRoute *
oValRoutePtr)

{
 actionName = oName;
 priority = oPriority;
 valueWsfRoutePtr = oValRoutePtr;
 vote = oVote;

}

UBFAction::UBFAction(std::string oName, int oPriority, int oVote, int oValInt)
{
 actionName = oName;
 priority = oPriority;
 valueInt = oValInt;
 vote = oVote;

}

.

123

C:\Users\ludam\Desktop\source\UBFAction.cpp 2
45
46

47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

UBFAction::UBFAction(std::string oName, int oPriority, int oVote, double
oValDbl)

{
 actionName = oName;
 priority = oPriority;
 valueDouble = oValDbl;
 vote = oVote;

}

UBFAction::UBFAction(std::string oName, int oPriority, int oVote, WsfGeoPoint
* oValWsfGeoPointPtr)

{
 actionName = oName;
 priority = oPriority;
 valueWsfGeoPointPtr = oValWsfGeoPointPtr;
 vote = oVote;

}

UBFAction::UBFAction(std::string oName, int oPriority, int oVote, WsfTrack *
oValWsfTrackPtr)

{
 actionName = oName;
 priority = oPriority;
 valueWsfTrackPtr = oValWsfTrackPtr;
 vote = oVote;

}

UBFAction::UBFAction(UBFAction * oUBFActionPtr)
{
 sourceID = oUBFActionPtr->sourceID;
 actionName = oUBFActionPtr->actionName;
 priority = oUBFActionPtr->priority;
 //Possible Values
 valueString = oUBFActionPtr->valueString;
 valueInt = oUBFActionPtr->valueInt;
 valueDouble = oUBFActionPtr->valueDouble;
 vote = oUBFActionPtr->vote;
 if (oUBFActionPtr->valueWsfGeoPointPtr!=nullptr)
 {
 valueWsfGeoPointPtr = oUBFActionPtr->valueWsfGeoPointPtr->Clone();
 }
 if (oUBFActionPtr->valueWsfRoutePtr != nullptr)
 {

124

C:\Users\ludam\Desktop\source\UBFAction.cpp 3
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

 valueWsfRoutePtr = oUBFActionPtr->valueWsfRoutePtr->Clone();

 }
 if (oUBFActionPtr->valueWsfTrackPtr != nullptr)
 {
 valueWsfTrackPtr = oUBFActionPtr->valueWsfTrackPtr->Clone();

 }
}

int UBFAction::GetSourceID()
{
 return sourceID;
}

std::string UBFAction::GetName()
{
 return actionName;
}

int UBFAction::GetPriority()
{
 return priority;
}

int UBFAction::GetVote()
{
 return vote;
}

std::string UBFAction::GetValueString()
{
 return valueString;
}

WsfRoute * UBFAction::GetValueWsfRoutePtr()
{
 return valueWsfRoutePtr;
}

int UBFAction::GetValueInt()
{
 return valueInt;
}

double UBFAction::GetValueDouble()
{
 return valueDouble;
}

125

C:\Users\ludam\Desktop\source\UBFAction.cpp 4
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

WsfGeoPoint * UBFAction::GetValueWsfGeoPointPtr()
{
 return valueWsfGeoPointPtr;
}

WsfTrack * UBFAction::GetValueWsfTrackPtr()
{
 return valueWsfTrackPtr;
}

void UBFAction::SetName(std::string oName)
{
 actionName = oName;
}

void UBFAction::SetPriority(int oPriority)
{
 priority = oPriority;
}

void UBFAction::SetVote(int oVote)
{
 vote = oVote;
}

void UBFAction::SetValueString(std::string oValString)
{
 valueString = oValString;
}

void UBFAction::SetValueWsfRoutePtr(WsfRoute * oValWsfRoutePtr)
{
 valueWsfRoutePtr = oValWsfRoutePtr;
}

void UBFAction::SetValueInt(int oValInt)
{
 valueInt = oValInt;
}

void UBFAction::SetValueDouble(double oValDouble)
{
 valueDouble = oValDouble;
}

void UBFAction::SetValueWsfGeoPointPtr(WsfGeoPoint * oValWsfGeoPointPtr)
{
 valueWsfGeoPointPtr = oValWsfGeoPointPtr;

126

C:\Users\ludam\Desktop\source\UBFAction.cpp 5
189
190
191
192
193
194
195

}

void UBFAction::SetValueWsfTrackPtr(WsfTrack * oValWsfTrackPtr)
{
 valueWsfTrackPtr = oValWsfTrackPtr;
}

127

C:\Users\ludam\Desktop\source\UBFActionList.cpp 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27

28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43

44

///Choate UBF Action CPP file
#include "UBFActionList.hpp"
#include "UBFAction.hpp"
#include <iostream>
#include <vector>
#include <string>
#include "WsfGeoPoint.hpp"

/**
* Default constructor
*/
UBFActionList::UBFActionList()
{
}

/**
* This function adds a UBFACtion pointer to this objects vector of UBFAction
pointers

*/
void UBFActionList::Add_Action(UBFAction * newAction)
{
 mActions.push_back(newAction);
}

/**
* Gets actions with names who exactly match the input string from this
object's vector of UBFAction objects

* @Param string byName is the name to be matched against
* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_By_Exact_Name(std::string byName)
{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)
 {
 if (tempActionPtr->GetName().compare(byName)==0)//then this Action

matches the asked for name
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions with names who partially match the input string from this
object's vector of UBFAction objects

* @Param string byName is the name to be matched against

.

128

C:\Users\ludam\Desktop\source\UBFActionList.cpp 2
45

46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63

64
65

66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82

83
84

85
86

* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_By_partial_Name(std::string byName)
{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)
 {
 if (tempActionPtr->GetName().find(byName) != std::string::npos)//then

this Action has a substring which matches the asked for string
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;

}

/**
* Gets actions with priorities who exactly match the input integer from this
object's vector of UBFAction objects

* @Param int priority is the integer to be matched against
* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_By_Exact_Priority(int byPriority)
{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)
 {
 if (tempActionPtr->GetPriority() == byPriority)//then this Action

matches the asked for priority so add it
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions with priorities atleast as large as the input integer from this
 object's vector of UBFAction objects

* @Param string byName is the name to be matched against
* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_By_Min_Priority(int minPriority)

129

C:\Users\ludam\Desktop\source\UBFActionList.cpp 3
87
88
89
90
91

92
93
94
95
96
97
98
99

100
101
102

103

104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124

125

126
127
128
129

{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)
 {
 if (tempActionPtr->GetPriority() >= minPriority)//then this Action

matches the asked for priority so add it
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions which have had a string value set for them from this object's
vector of UBFAction objects

* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_by_type_String()
{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)
 {
 if (tempActionPtr->GetValueString() == "ERROR NEVER INITIALIZED")//

then this Action never had an assigned string so do nothing
 {
 //do nothing
 }
 else
 {//then check the substring for a match
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions which have had a WsfRoute value set for them from this object's
 vector of UBFAction objects

* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_by_type_WsfRoute()
{
 UBFActionList * newList = new UBFActionList();

130

C:\Users\ludam\Desktop\source\UBFActionList.cpp 4
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145

146

147
148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166

167

168
169
170
171
172

 for each (UBFAction * tempActionPtr in mActions)
 {
 if (tempActionPtr->GetValueWsfRoutePtr() == nullptr)//then this Action

 doesnt have an assigned int so do nothing
 {
 //do nothing
 }
 else
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions which have had an int value set for them from this object's
vector of UBFAction objects

* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_by_type_Int()
{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)
 {
 if (tempActionPtr->GetValueInt() == -1)//then this Action doesnt have

an assigned int so do nothing
 {
 //do nothing
 }
 else
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions which have had a double value set for them from this object's
vector of UBFAction objects

* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_by_type_Double()
{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)

131

C:\Users\ludam\Desktop\source\UBFActionList.cpp 5
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187

188

189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
207
208

209

210
211
212
213
214
215

 {
 if (tempActionPtr->GetValueDouble() == -1)//then this Action doesnt

have a Double value assigned so do nothing
 {
 //do nothing
 }
 else
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions which have had a WsfGeoPoint value set for them from this
object's vector of UBFAction objects

* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_by_type_WsfGeoPoint()
{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)
 {
 if (tempActionPtr->GetValueWsfGeoPointPtr() == nullptr)//then this

Action doesnt have a WsfGeoPoint object so do nothing
 {
 //do nothing
 }
 else
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions which have had WsfTrack value set for them from this object's
vector of UBFAction objects

* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_by_type_WsfTrack()
{
 UBFActionList * newList = new UBFActionList();
 for each (UBFAction * tempActionPtr in mActions)
 {

132

C:\Users\ludam\Desktop\source\UBFActionList.cpp 6
216

217
218
219
220
221
222
223
224
225
226
227
228
229

230

231
232
233
234
235
236
237

238

239
240
241
242
243
244

245
246

247
248
249
250
251
252
253
254
255
256
257

 if (tempActionPtr->GetValueWsfTrackPtr() ==nullptr)//then this Action
doesnt have a WsfTrack object so do nothing

 {
 //do nothing
 }
 else
 {
 newList->Add_Action(tempActionPtr);
 }
 }
 return newList;
}

/**
* Gets actions which have the highest priority and unique names from this
object's vector of UBFAction objects

* @return A new UBFActionList object managed by AFSIM per UtScriptRef::cManage
 with only the appropriate UBFAction pointers

*/
UBFActionList * UBFActionList::Get_Actions_Unique_Top_Priorities()
{
 UBFActionList * newList = new UBFActionList();
 std::vector<std::string> usedNames;

 //iterates over all of the Actions of this object UBFActionsList and
inserts them into a newList which will end with

 //actions of all unique names and the highest priority possible from the
previous mAction vector

 for each (UBFAction * testAction in mActions)
 {
 bool found = false;
 for each (std::string testString in usedNames)
 {
 if (testString.compare(testAction->GetName())==0)//then they are

the same
 {
 found = true;//indicate there is already an action of this

name found
 break;//breaks out of inner for loop
 }
 else
 {
 }
 }

 if (found==false)//then this is a new Action name so add it
 {
 newList->Add_Action(testAction);//adds the action
 usedNames.push_back(testAction->GetName());//add the name to the

133

C:\Users\ludam\Desktop\source\UBFActionList.cpp 7

258
259
260

261
262
263
264
265

266
267

268
269
270
271

272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299

used list
 continue;//continues to the next iterations of the outer for loop
 }
 else//then this action is not new so check if it is better or worse

than the one already in the list
 {
 UBFAction * tempAction = newList->Next();
 while (tempAction!=nullptr)
 {
 if (tempAction->GetName().compare(testAction->GetName())

==0)//then the identical one was found
 {
 if (tempAction->GetPriority() >= testAction->GetPriority

())//then newList's Action was better so do nothing
 {

 }
 else //then the oldList has a better action so replace the

 newLists Action with it
 {
 newList->Erase_Action_By_Name(tempAction->GetName());
 newList->Add_Action(testAction);
 }
 }
 tempAction = newList->Next();
 }//end while (tempAction!=nullptr)
 newList->Next_Restart();//resets the newList's next iterator to

the start position
 }//end if (found==false) else

 }//end for each (UBFAction * testAction in mActions)
 return newList;
}

/**
* This function is used to return the first UBFAction pointer from the vector
of UBFActions owned by this object

* @return UBFACtion pointer the first pointer from the vector of UBFActions
*/
UBFAction * UBFActionList::First()
{
 if (mActions.size()>0)
 {
 return mActions[0];
 }
 return nullptr;
}

/**

134

C:\Users\ludam\Desktop\source\UBFActionList.cpp 8
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314

315
316
317
318
319
320

321
322
323
324
325
326
327
328

329

330

331
332
333
334
335
336
337
338

339
340
341

* This function is used to return the last UBFAction pointer from the vector
of UBFActions owned by this object

* @return UBFACtion pointer the last pointer from the vector of UBFActions
*/
UBFAction * UBFActionList::Last()
{
 if (mActions.size() > 0)
 {
 return mActions[mActions.size()-1];
 }
 return nullptr;
}

/**
* This function is used to return the next UBFAction pointer from the vector
of UBFActions owned by this object. NExt is

* determined by the iteratorForNExtMethods integer
* @return UBFACtion pointer the next pointer from the vector of UBFActions
*/
UBFAction * UBFActionList::Next()
{
 if (iteratorForNextMethods >= 0 && iteratorForNextMethods<(int)

mActions.size())
 {
 return mActions[iteratorForNextMethods++];
 }
 return nullptr;
}

/**
* This function is used to return the UBFAction pointer from the vector of
UBFActions owned by this object by index

* @Param Integer Index which is the indicie in the vector of UBFActions to
look for.

* @return UBFACtion pointer the first pointer from the vector of UBFActions;
NULL if outside of range

*/
UBFAction * UBFActionList::ByIndex(int i)
{
 if (i>=0&&i<(int)mActions.size())
 {
 return mActions[i];
 }
 std::cout << "Index out of bounds, returning null for

UBFActionList.ByIndex(int " << i << ") call" << std::endl;
 return nullptr;
}

135

C:\Users\ludam\Desktop\source\UBFActionList.cpp 9
342
343
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358

359

360
361
362
363
364
365
366
367
368

369
370
371
372
373
374
375

/**
* This function restarts the integer used to iterate over the vector of
UBFAction pointers by the Next() function.

*/
void UBFActionList::Next_Restart()
{
 iteratorForNextMethods = 0;
}

int UBFActionList::Size()
{
 return (int)mActions.size();
}

/**
* This function is used to remove the first UBFAction pointer from this
object's vector of UBFAction pointers by name

* @Param String name to match and remove only the first instance of from this
object's vector of UBFAction pointers

*/
bool UBFActionList::Erase_Action_By_Name(std::string oName)
{
 for (int i = 0; i < (int)mActions.size(); i++)
 {
 if (oName.compare(mActions[i]->GetName())==0)//then they are the same
 {
 mActions.erase(mActions.begin()+i);
 return true;//found one of that name so exit...I do not delete all

 because the mActions object is now changed so continueing a for
 loop on it is an uncomfortable procedure.

 }
 }
 return false;
}

136

C:\Users\ludam\Desktop\source\UBFArbiter.cpp 1
1
2
3
4
5

6

7

8
9

10
11
12
13
14
15
16
17
18
19
20

21
22

23
24
25

26
27
28
29
30
31
32
33
34

35
36
37
38
39
40

/**
* @title UBFArbiter.cpp
* @Author Jeff Choate
* @email Jeff.lee.choate@gmail.com or Jeffrey.choate@us.af.mil
* @description This file defines the UBFArbiter class for Capt Jeffrey
Choate's Thesis work at the Air Force Institute of Technology, 2015-2017.

* @usage A UBFArbiter object is used to filter UBFActions given to it by an
owning UBFBehavior and returning a list of filtered UBFActions

* for the UBFBehavior to either act upon or pass up to that UBFBehavior's
parent UBFBehavior.

* @Modified The date last modified: 9 Oct 2016
* @Change_Log:
* 9 Oct 2016:
*/
#include "UBFArbiter.hpp"
#include "WsfScenario.hpp"
#include "UBFActionList.hpp"
#include "UBFActionList.hpp"
#include "script/WsfScriptContext.hpp"

#include <iostream>
/**
* This initialization is required for the singleton UBFArbiter used for
scripts to access the current UBFArbiter.

*/
UBFArbiter* UBFArbiter::staticUBFArbiterPtr = nullptr;//needed to prevent
external symbol errors on static member variable usage.

/**
*This Function returns the singleton instance pointer for the currently
executing Arbiter. Not thread safe; work around for not knowing how to
access parent object of executing script.

*@return UBFArbiter The current operating UBFArbiter
*/
UBFArbiter * UBFArbiter::getInstancePtr()
{
 return staticUBFArbiterPtr;
}

/**
* This Function sets the singleton instance pointer for the currently
executing Arbiter. Not thread safe; work around for not knowing how to
access parent object of executing script.

* @param ptr A UBFArbiter * object pointing to the currently executing Arbiter
*/
void UBFArbiter::setInstancePtr(UBFArbiter * ptr)
{
 staticUBFArbiterPtr = ptr;
}

.

137

C:\Users\ludam\Desktop\source\UBFArbiter.cpp 2
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

61

62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82
83

/**
* This is the default constructor used when the scenario creates the very
first instance of the Object.

*/
UBFArbiter::UBFArbiter(WsfScenario& aScenario) :WsfProcessor(aScenario),
mContextPtr(new WsfScriptContext(*aScenario.GetScriptContext()))
{
}

/**
* This is the Copy constructor used only by the Clone() method..
* @Param UBFArbiter & mArbiter is the Arbiter being copied.
*/
UBFArbiter::UBFArbiter(const UBFArbiter & oArbiter) :WsfProcessor(oArbiter),
mContextPtr(new WsfScriptContext(*(oArbiter.mContextPtr)))
{
 if (mContextPtr!=nullptr)
 {
 //manually copy the Execute script to the new Execute script pointer.

 //Unsure if able to simply copy the mArbiter.mExecuteScript or not.

Done based on AFSIM examples.
 mExecuteScriptPtr = mContextPtr->FindScript("Execute");//possibly

assigned null is acceptable if there wasn't an Execute Script
 }
}

/**
* This function adds a UBFAction * to this Arbiter's set/vector of Actions
that will be returned.

* No current way to remove actions from this list.
* @Param UBFAction * A pointer to an action that will
*/
void UBFArbiter::Add_Action(UBFAction * newAction)
{
 if (newAction!=nullptr)
 {
 newActions.push_back(newAction);
 }
 else
 {
 std::cout << "WARNING Attempting to add null UBFAction failed." <<

std::endl;
 }
}

/**

138

C:\Users\ludam\Desktop\source\UBFArbiter.cpp 3
84

85

86
87
88
89
90
91
92
93
94
95
96

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111

112
113

114
115
116
117

118

119

120
121
122

* This function is required by AFSIM and processes all text input to construct
 versions of a UBFArbiter object.

* @Param UtInput &: Only handles Script Block for Execute...end_Execute while
passing the other commands to WsfProcessor.ProcessInput().

* still considering adding a script variables ability for UBFArbiters or not
*/
bool UBFArbiter::ProcessInput(UtInput & aInput)
{
 bool myCommand = false;

 std::string command = aInput.GetCommand();

 if (command == "Execute")
 {
 mExecuteScriptPtr = mContextPtr->Compile("Execute", "void", aInput,

"end_Execute");
 myCommand = true;
 }
 else if (command == "script_variables")
 {
 myCommand = mContextPtr->ProcessInput(aInput);
 }
 else
 {
 myCommand = WsfProcessor::ProcessInput(aInput);
 }
 return myCommand;
}

/**
* This function sets the script context for a UBFArbiter. This is necessary
because the

initialize method is never explicitly called for a UBFArbiter.
* @Param WsfScriptContext * is the pointer to the script context you wish to
set this UBFArbiter's script contex to.

*/
void UBFArbiter::SetContext(WsfScriptContext * newContextPtr)
{
 //mContextPtr = newContextPtr;//This method overwrites the old mContextPtr

 losing the script variables
 mContextPtr->Initialize(newContextPtr->GetTIME_NOW(newContextPtr-

>GetContext()), newContextPtr->GetPLATFORM(newContextPtr->GetContext()),
 this);

 mContextPtr->SetParent(newContextPtr);//does this overwrite the current
UBFBehavior's Script variables though? initial tests say no but
shouldn't it?

}

139

C:\Users\ludam\Desktop\source\UBFArbiter.cpp 4
123
124

125
126
127
128

129
130

131
132

133
134
135

136
137
138
139
140
141
142
143
144
145
146

147
148
149

150
151
152
153
154

155
156
157
158
159

160
161
162

/**
* This function is used to initialize the UBFArbiter's list of input Actions
and calls the Execute script for this UBFArbiter.

* @Param vector of UBFAction pointers.
* @returns a vector of Action* pointers.
*/
std::vector<UBFAction*> UBFArbiter::Process(std::vector<UBFAction*>
inputActions)

{
 UBFArbiter::setInstancePtr(this);//allow Arbiter Scripts to execute

knowing who the correct arbiter object is
 newActions.clear();
 mActions.clear();//clear all of the Action pointers from the last time

this UBFArbiter was called.
 Next_Restart();

 //Assign the list of action objects from the parent behavior and its
children behaviors to a local structure

 //accessible from the singleton of Arbiters
 for each (UBFAction* var in inputActions)
 {
 mActions.push_back(var);
 }
 double retVal = 0.0;
 if (mExecuteScriptPtr != 0)
 {
 UtScriptData scriptRetVal(retVal);
 UtScriptDataList scriptArgs;
 mContextPtr->ExecuteScript(mExecuteScriptPtr, scriptRetVal,

scriptArgs);
 }
 UBFArbiter::setInstancePtr(nullptr);
 if (mExecuteScriptPtr != 0) {//if the arbiter's script is not null then

return the arbiters desired actions
 return newActions;
 }
 else
 {
 return mActions;//return the given actions if the arbiter script is

null
 }
}

/**
* This is the destructor for UBFArbiter objects. The only pointers created in
 this object are WsfScriptObjects.

*/
UBFArbiter::~UBFArbiter()
{

140

C:\Users\ludam\Desktop\source\UBFArbiter.cpp 5
163

164

165
166
167

 //delete mContextPtr;//Not deleted because at one point this may have been
 overwritten with a parent UBFBehavior mContextPtr

 //...how/when should i delete the original mContext pointer created by
this object..currently i just lose track of it after SetContext() is
called

 //Do i need to delete the mExecuteScriptPtr or is that managed by AFSIM?
}

141

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 1
1
2
3
4
5

6

7

8
9

10

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33

34
35
36

37

/**
* @title UBFBehavior.cpp
* @Author Jeff Choate
* @email Jeff.lee.choate@gmail.com or Jeffrey.choate@us.af.mil
* @description This file defines the UBFBehavior class for Capt Jeffrey
Choate's Thesis work at the Air Force Institute of Technology, 2015-2017.

* @usage A UBFBehavior object is used to store the definitions for a
UBFBehavior. Stores an associated UBFArbiter, script pointers for
Pre_Condition,

* Execute, Map_To_Actions, and a list of children UBFBehaviors as well as
other features for that UBFBehavior.

* @Modified The date last modified: 9 Oct 2016
* @Change_Log:
* 23 Jan 2017: REQUIRES MOD TO previous script files. Actio.create() was
changed here.

* 9 Oct 2016: Added comments, deleted GetUniqueID() usage since need was
unknown, deleted mArbiterAssigned assignment from Copy Constructor since

* the actual UBFArbiter pointer wasnt being copied. Re -ordered the
Initialize() to have the Processor::Initialize() first incase
mContext::Initialize()

* required parameters set by that when it operates.
*/
#include "UBFBehavior.hpp"
#include "UBFAction.hpp"
#include "processor\WsfProcessorTypes.hpp"
#include "UBFArbiter.hpp"
#include "WsfScenario.hpp"
#include <iostream>
#include "InputTree.hpp"
#include "UtInputBlock.hpp"
#include "script/WsfScriptContext.hpp"
#include "WsfPlatform.hpp"
#include "UBFActionList.hpp"
#include "WsfSimulation.hpp"
#include "WsfApplication.hpp"
#include <time.h>

/**
* This initialization is required for the singleton UBFBehavior used for
scripts to access the current UBFBehavior.

*/
UBFBehavior* UBFBehavior::staticUBFBehaviorPtr = nullptr;//needed to prevent
external symbol errors on static member variable usage.

/**
*This Function returns the singleton instance pointer for the currently
executing UBFBehavior. Not thread safe; work around for not knowing how to
access parent object of executing script.

*@return UBFBeahvior The current operating UBFBehavior

.

142

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 2
38
39
40
41
42
43
44
45

46

47
48
49
50
51
52
53
54

55
56
57
58

59
60
61
62
63
64
65
66
67
68

69

70

71

72
73
74

*/
UBFBehavior * UBFBehavior::getInstancePtr()
{
 return staticUBFBehaviorPtr;
}

/**
* This Function sets the singleton instance pointer for the currently
executing Behavior. Not thread safe; work around for not knowing how to
access parent object of executing script.

* @param ptr A UBFBehavior * object pointing to the currently executing
Behavior

*/
void UBFBehavior::setInstancePtr(UBFBehavior * ptr)
{
 staticUBFBehaviorPtr = ptr;
}

/**
* This is the default constructor used when the scenario creates the very
first instance of the Object.

*/
UBFBehavior::UBFBehavior(WsfScenario & aScenario) :WsfProcessor(aScenario),
mContextPtr(new WsfScriptContext(*aScenario.GetScriptContext()))
//mScenario(&aScenario)//checking if this is necessary since WsfProcessor
holds a Scenario ptr

{
 WsfObject::SetType(WsfStringId("undefined"));
 WsfObject::SetName(WsfStringId("undefined"));
}

/**
* This is the Copy constructor used only by the Clone() method.
* @Param UBFBehavior & mUBFBehavior is the UBFBehavior being copied.
*/
UBFBehavior::UBFBehavior(const UBFBehavior & mUBFBehavior) : WsfProcessor
(mUBFBehavior),

mArbiterName(mUBFBehavior.mArbiterName),//Copies string name of Arbiter
associated..Not pointer of Arbiter because at Initilize this object will
get it's own unique clone of a UBFArbiter by that name

mProcessInputChildren(mUBFBehavior.mProcessInputChildren),//Copies the tree
of string names of children behavirs..Not pointers because at Initialize
this object will get it's own tree of unique cloned UBFBehaviors by those
names

mContextPtr(new WsfScriptContext(*(mUBFBehavior.mContextPtr)))//passes
scenario context to clones

//mScenario(mUBFBehavior.mScenario)//checking if this is necessary
{
 if (mContextPtr!=nullptr)

143

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 3
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

98
99

100
101
102
103
104
105

106

107

108

109

110

111
112

 {
 //ensure all script pointers are copied as well.
 mExecuteScriptPtr = mContextPtr->FindScript("Execute");
 mMapToActionScriptPtr = mContextPtr->FindScript("Map_To_Action");
 mPreConditionScriptPtr = mContextPtr->FindScript("Pre_Condition");
 }
 debug_time = mUBFBehavior.debug_time;
 executeFrequency = mUBFBehavior.executeFrequency;
}

/**
* This function is used to construct the UBFBehavior tree structure
* of children UBFBehavior pointers, find/assign
* the UBFArbiter pointer being used, and initialize the Script
* Context to the correct PLATFORM for
* itself and it's children objects (UBFBehaviors/UBFArbiter).
* This should only be called by AFSIM code and is only called if this
* exact object is a child of a Platform.
* Further work may be done to redistribute work being done here to the
* ProcessInput method if developer is better able to use
* the FromInput methods as I was unable.
* @Param aSimTime is a double with a value provided by AFSIM for the current
simulation time

* @return boolean with the status of successful initialization or lack
thereof.

*/
bool UBFBehavior::Initialize(double aSimTime)
{

 bool myCommand = false;//success or failure of initializations
 myCommand |= WsfProcessor::Initialize(aSimTime);

 //TO DO: I need help with properly setting this context because I should

be able to access WSFDraw() and PLATFORM.goto
 //however, these functions being used cause my simulation to hang and

fail to complete.
 mContextPtr->SetParent(&GetSimulation()->GetScriptContext());//This

allows use of some global functions in script (TIME_NOW) but not others
 (PLATFORM.goto... WsfDraw())

 myCommand&= mContextPtr->Initialize(aSimTime, GetPlatform(), this);//
Allows scripts access to correct PLATFORM object.

 myCommand &= BuildOwnBehaviorTree(mContextPtr, 0); //Constructs tree of
children UBFBehaviors

 myCommand &= AssignMyArbiter(mContextPtr); //Conceptually a UBFArbiter
doesnt need to know it's context because it should only filter based on
 the list of UBFActions it is given. But this allows an Arbiter to make
 decisions based on it's parent PLATFORM

 return myCommand;
 GetScenario();

144

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 4
113
114
115
116
117
118
119
120

121

122

123
124

125

126

127
128
129

130
131

132

133
134

135
136
137
138
139

140

141
142
143

144

145

}

///Destructor...I still need to put more thought into this
UBFBehavior::~UBFBehavior()
{
 //i currently have terrible memory management and memory leaks...this i

realize
 //delete mContextPtr;//Not deleted because at one point this may have

been overwritten with a parent UBFBehavior mContextPtr
 //...how/when should i delete the original mContext pointer created by

this object..currently i just lose track of it after SetContext() is
called

 //Also need to think of a way to properly delete the tree of InputTree
pointers because they are created by this class, however, the same

 //pointers may be used by any cloned versions of this behavior and only
the parent should delete...consider a flag in each

 //constructor to denote if the object is a original or not as well as
counters to simulate smart pointers so each object may

 //delete an object

 delete Arbiter;//Delete child Arbiter because it was clone()'d
specifically for this objects usage and is never copied to children

 //Do I need to delete the mExecuteScriptPtr, mPreConditionScriptPtr, or
mMapToActionsScriptPtr or are they managed by AFSIM?

 //If I do then only the root UBFBehavior should delete as clones may also
 be using the same pointers

 //Do not delete the staticUBFBehaviorPtr because that simply points to
UBFBehavior objects managed by other UBFBehaviors or AFSIM

}

/**
* This function is required by AFSIM and processes all text input to
construct versions of a UBFBehavior object. UBFBehavior objects

* are then stored in an AFSIM factory which may be used to retrieve those
named UBFBehaviors and clone them for usage in Children/tree structures.

* @Param UtInput &:
* Input Command Handled || Description of how it handles it
* Map_To_Action || Assigns/Compiles a UtScript Block which an
Analyst may use to turn this UBFBehavior's UBFActions into actual outputs

* Pre_Condition || Assigns/Compiles a UtScript Block which an
Analyst may use as a quick check of this UBFBehavior executing or not;
default is True

* Execute || Assigns/Compiles a UtScript Block which an

145

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 5

146

147

148

149

150

151

152

153

154

155

156

157

158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
177
178

Analyst may use to generate custom UBFAction's to pass to parent or
Map_To_Action script

* Arbiter || Stores the name of an Arbiter to assign to the
UBFBehavior at the Initialize stage

* Frequency || Stores a second value that determines max
frequency a behavior may be called, only usable with children,

* Add_Post_Condition || Adds a string in a list of Post conditions that
a behavior may ADD

* Remove_Post_Condition || Adds a string in a list of Post conditions that
a behavior may REMOVE

* Initial_Condition || Adds a string in a list of initial conditions a
behavior is applicable towards

* Required_Data || Adds a string in a list of required data,
sensors or generic data, required for a UBFBehavior

* Action_Setting || Adds a string in a list indicating motors
effected

* Goal_Acieved || Assigns a string to a field in the behavior
indicating the abstract goal it achieves

* Children || Stores/Handles adding UBFBehavior names to
InputTree structure

* ----Behavior || Sub-Command to Children which indicates a
Behavior's Name follows the command

* script_variables || Sends aInput to mContext.ProcessInput(...) to
handle assigning Script variables; unsure how these are rememered when
mContext is re-set for children.

* || All other commands sent to
WsfProcessor.ProcessInput(...).

*/
bool UBFBehavior::ProcessInput(UtInput & aInput)
{
 bool myCommand = false;

 std::string command = aInput.GetCommand();
 WsfVariable<WsfStringId> mChildName;

 std::string ArbiterName;
 if (command == "Map_To_Action")
 {
 mMapToActionScriptPtr = mContextPtr->Compile("Map_To_Action", "void",

 aInput, "end_Map_To_Action");
 myCommand = true;
 }
 else if (command == "Add_Post_Condition")
 {
 std::string addedValue;
 aInput.ReadValue(addedValue);
 Add_Adder_Post_Condition(addedValue);
 myCommand = true;
 }

146

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 6
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224
225
226

 else if (command == "Remove_Post_Condition")
 {
 std::string addedValue;
 aInput.ReadValue(addedValue);
 Add_Adder_Post_Condition(addedValue);
 myCommand = true;
 }
 else if (command == "Action_Setting")
 {
 std::string addedValue;
 aInput.ReadValue(addedValue);
 Add_Action_Setting(addedValue);
 myCommand = true;
 }
 else if (command == "Required_Data")
 {
 std::string addedValue;
 aInput.ReadValue(addedValue);
 Add_Required_Data(addedValue);
 myCommand = true;
 }
 else if (command == "Goal_Achieved")
 {
 std::string addedValue;
 aInput.ReadValue(addedValue);
 mGoalAchieved = addedValue;
 myCommand = true;
 }
 else if (command == "Initial_Condition")
 {
 std::string addedValue;
 aInput.ReadValue(addedValue);
 Add_Initial_Condition(addedValue);
 myCommand = true;
 }
 else if (command == "Debug_Time")
 {
 debug_time = true;
 myCommand = true;
 std::cout << "\nDEBUGING TIME " << std::endl;
 }
 else if (command == "Pre_Condition")
 {
 mPreConditionScriptPtr = mContextPtr->Compile("Pre_Condition",

"bool", aInput, "end_Pre_Condition");
 myCommand = true;
 //std::cout << "\nRead Pre_condition flag " << std::endl;
 }
 else if (command == "Execute")

147

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 7
227
228

229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

267
268
269
270

 {
 //mExecuteScriptPtr = mContextPtr->CompileImplicitScript(aInput,

"Execute", "void");
 mExecuteScriptPtr = mContextPtr->Compile("Execute", "void", aInput,

"end_Execute");
 myCommand = true;
 std::cout << "\nRead >>>>>>>>>>>>>>>>>>>>>execute flag " <<std::endl;
 }
 else if (command == "Arbiter")
 {
 myCommand = true;
 mArbiterName.ReadValue(aInput);
 }
 else if (command == "Frequency")
 {
 myCommand = true;
 aInput.ReadValue(executeFrequency);
 std::cout << "FOUND FREQUENCY: " << executeFrequency << std::endl;
 }
 else if (command == "Children")
 {
 //reading input via readcommands and readvalues because UtInputBlock

was difficult to use
 myCommand = true;
 InputTree * lastChild = nullptr;
 aInput.ReadCommand(command);//pops a command off the front of the

aInput stream
 command = aInput.GetCommand();

 while (command != "end_Children")
 {
 if (command == "Behavior")
 {
 std::string behaviorName;
 aInput.ReadValue(behaviorName);
 if (behaviorName.length() > 0)
 {
 lastChild = new InputTree(behaviorName);
 mProcessInputChildren.push_back(lastChild);
 myCommand = true;
 }
 else
 {
 std::cout << "Read in blank or empty behavior name. This

 is not allowed." << std::endl;
 return false;
 }
 }
 else if (command == "Children")

148

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 8
271
272
273
274
275
276
277
278

279
280
281
282
283
284

285
286
287
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

307

308

309

310

 {
 if (lastChild != nullptr)
 {
 myCommand = StoreChildren(lastChild, aInput);
 }
 else
 {
 std::cout << "Error, to nest children lists they must be

directly under a parent and not another children flag" <<
 std::endl;

 return false;
 }
 }
 else
 {
 std::string msg = "Command not recognized within children

block: " + command;
 throw UtInput::BadValue(aInput, msg);
 return false;
 }
 aInput.ReadCommand(command);//pop command off front of aInput

stream
 }//end while loop reading in behaviors
 return myCommand;
 }
 else if (command == "script_variables")
 {
 myCommand=mContextPtr->ProcessInput(aInput);
 }
 else
 {//handles update interval call
 myCommand = WsfProcessor::ProcessInput(aInput);
 }

 return myCommand;
}

/**
* This function assigns and builds the tree of UBFBehavior pointers from the
InputTree structure. This should only be called from

* the Initialize() function or from a parent UBFBehavior in the tree
structure. Handles building subtrees defined in this UBFBehavior

* of it's children by calling the function AddChildrenToChildren
()...Elaborating on this for clarity: Initially a child is searched for,

* the child's BuildOwnBehaviorTree() is called to process the child's
InputTree structure then the AddChildrenToChildren()

* method is called to add InputTree pointers defined by this/parent
UBFBehaviors.

149

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 9
311

312

313
314
315

316
317
318
319
320

321
322
323
324

325
326
327
328
329

330

331
332
333
334
335

336
337

338
339
340

341

342
343

344
345

* @Param WsfScriptContext is passed in to allow a child UBFBehavior object to
 know the PLATFORM/context it is operating in

* @Param int depthOfTree is passed in as a check to dis -allow circular
references in tree structures that Analysts my define

* @return A bool indicating success (true) or failure (false)
*/
bool UBFBehavior::BuildOwnBehaviorTree(WsfScriptContext* newScriptContextPtr,
 int depthOfTree)

{
 depthOfTree++;
 if (depthOfTree > maxTreeDepth)
 {
 std::cout << "ERROR: MAX BEHAVIOR TREE DEPTH REACHED. CHECK BEHAVIOR

TREES FOR LOOPS or increase max tree depth" << std::endl;
 return false;
 }
 bool myCommand = true;
 for each (InputTree* var in mProcessInputChildren)//traverse string tree

to add pointers to UBFBehaviors
 {
 WsfVariable<WsfStringId> tempname = var->GetName();
 if (tempname.GetId() != 0)
 {
 if (!WsfProcessorTypes::Get(GetScenario()).Find

(tempname.GetString())) {
 std::cout << "ERROR: couldn't find Behavior: " <<

tempname.GetString() << std::endl;
 return false;
 }
 else
 {
 //then the behavior was defined so add it to this nodes

chidren list and
 //check if it has children who need to be added
 UBFBehavior* tempBehavior = static_cast<UBFBehavior*>

(WsfProcessorTypes::Get(GetScenario()).Find
(tempname.GetString())->Clone());

 mUBFChildren.push_back(tempBehavior);//added to children list
 tempBehavior->SetName(tempname.GetString());
 tempBehavior->AssignMyArbiter(newScriptContextPtr);//this is

because init1 does not get called on children
 tempBehavior->SetContextPtr(newScriptContextPtr);//this

overwrites the UBFBehaviors script variables
 //tempBehavior->SetParentContextPtr(newScriptContextPtr);
 bool testSuccess = tempBehavior->BuildOwnBehaviorTree

(newScriptContextPtr, depthOfTree);//construct child's tree
 based on child's ProcessInput

 if (!testSuccess)
 {

150

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 10
346

347
348
349

350
351
352

353
354
355

356
357
358
359
360
361
362
363

364
365
366
367
368
369
370

371

372

373
374
375
376
377
378
379

380

381
382
383

 std::cout << "Failed to add child to child " <<
std::endl;

 return false;//propogate up the failure
 }
 //add additional children to that same child iff the Input

string tree contains UBFBehaviors under a children tag for
this child

 if (var->mChildren.size()>0)//children check
 {
 bool success = AddChildrenToChildren(var, tempBehavior,

newScriptContextPtr, depthOfTree);
 if (!success)
 {
 std::cout << "Failed to add child to child " <<

std::endl;
 return false;//propogate up the failure
 }
 }
 myCommand = true;
 }
 }
 else {
 //std::cout << "No children found for this behaivior: " << this -

>GetNameId() << std::endl;
 }
 }//End foreach assigning children behaviors
 return myCommand;
}

/**
* This function is called by AFSIM iff this particular UBFBehavior Object is
a direct component of a platform.

* This function calls the root UBFBehavior mExecute method and the
map_to_actions method. This is called at the

* interval set by the Analyst's use of update_interval command in script.
Default interval is NEVER.

* @Param aSimTime a double with the current simulation time
*/
void UBFBehavior::Update(double aSimTime)
{
 try
 {
 mExecute(0, aSimTime);//Send default value 0 as starting depth of the

 tree being executed, redundant
 //because I should have also implicitly checked for this

duringt he tree construction
 }
 catch (const std::exception& e)
 {

151

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 11
384

385
386
387
388
389
390
391
392

393
394

395
396
397
398

399
400
401
402

403
404
405
406
407
408
409

410

411

412

413

414
415
416
417
418
419
420
421
422

 std::cout << "UN HANDLED EXCEPTION IN EXECUTE TREE" << e.what() <<
std::endl;

 }

 try
 {
 //Execute script to map the actions to actual outputs in the program
 //Called here because only the root node(behavior defined in the

platform)
 //map to action method matters
 ExecuteMapToOutputs();//creates error if this isnt implemented in

scriptFIX ME
 }
 catch (const std::exception& e)
 {
 std::cout << "UN HANDLED EXCEPTION IN MAP TO OUTPUTS" << e.what()

<<std::endl;
 }

 //TODO: add code here to clean up all pointers created on this run
(Action Objects)

 //since i should be done with them...think about this more

}

/**
* This function is used to call the Execute and Pre_condition scripts of a
UBFBehavior object, children UBFBehavior

* object mExecute() functions as well as this UBFBehavior object's Arbiter's
object's Execute script to filter this

* UBFBehavior's actions. This should only be called by a UBFBehavior
object's Update method or a parent's mExecute() function.

* @Param depth is an integer which allow checking for circular tree
structures and prevents loops.

* @return a vector of UBFAction pointers which are conceptually the output of
 this UBFBehavior object

*/
std::vector<UBFAction*> UBFBehavior::mExecute(int depth, double aSimTime)
{
 mActions.clear();//clear last iterations actions from the set of actions
 Next_Restart();

 time_t starttime, preConditionTime, childrenTime, ExecuteTime, TotalTime;
 if(debug_time)
 starttime =time(0);

152

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 12
423
424
425
426
427

428
429
430
431
432
433
434
435
436
437
438
439
440
441

442
443
444

445
446

447
448
449

450
451
452
453

454
455
456
457
458
459
460
461

462

 //check the depth of the tree to prevent infinite recursion loops
 depth++;
 if (depth > maxTreeDepth)
 {
 std::cout << "Max behavior depth reached...Check your behaviors for

circles..Do a series of behaviors call each other resulting in
endless depth to the tree?" << std::endl;

 return mActions;
 }
 double retVal = 0.0;
 if (executeFrequency>0 && (timeLastExecuted+executeFrequency)> aSimTime)
 {
 //std::cout << "Failed Frequency Check"<<std::endl;
 return std::vector<UBFAction*>();//return nothing
 }

 timeLastExecuted = aSimTime;

 if (mPreConditionScriptPtr != 0)
 {
 //---Execute the script for the precondition in order to find it's

return value and hence check the pre-condition
 UtScriptData scriptRetVal(retVal);
 UtScriptDataList scriptArgs;
 //this->staticUBFBehaviorPtr = this;//sets singleton/static variable

used to find current behavior that is executing. Allows action
script methods to find correct behavior

 UBFBehavior::setInstancePtr(this);
 mContextPtr->ExecuteScript(mPreConditionScriptPtr, scriptRetVal,

scriptArgs);
 UBFBehavior::setInstancePtr(nullptr);

 if (!scriptRetVal.GetBool()) //Now check the returned value
from the precondition script

 {
 if (debug_time)
 {
 std::cout << GetName() << " pre_condition time: " <<

starttime - time(0);
 }
 return std::vector<UBFAction*>();//return nothing
 }
 }
 if (debug_time)
 preConditionTime = time(0);

 //Execute all children and add their actions to this behavior's action
subset

 for each (UBFBehavior* varBehavior in mUBFChildren)

153

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 13
463
464
465

466
467
468
469
470
471
472
473
474
475

476
477
478
479
480
481

482
483

484
485
486

487
488
489
490
491

492

493

494
495
496
497

498
499
500
501

 {

 std::vector <UBFAction*> tempActions = varBehavior->mExecute(depth,
aSimTime);

 //add all children actions to this behavior's vector of actions
 for each (UBFAction* varAction in tempActions)
 {
 mActions.push_back(varAction);
 }
 }
 if (debug_time)
 childrenTime = time(0);
 //Execute the execute Script from the analyst for current behavior (above

 executed children mExecutes)
 if (mExecuteScriptPtr != 0)
 {

 UtScriptData scriptRetVal(retVal);
 UtScriptDataList scriptArgs;
 //this->staticUBFBehaviorPtr = this;//sets singleton/static variable

used to find current behavior that is executing. Allows action
script methods to find correct behavior

 UBFBehavior::setInstancePtr(this);
 mContextPtr->ExecuteScript(mExecuteScriptPtr, scriptRetVal,

scriptArgs);
 UBFBehavior::setInstancePtr(nullptr);

 //std::cout << "executed script and found this return double " <<
scriptRetVal.GetDouble() << std::endl;

 }
 if (debug_time)
 ExecuteTime = time(0);
 if (Arbiter!=nullptr)
 {//then this Behavior has an Arbiter hence filter all of this behavior's

Actions through it's Arbiter
 mActions = Arbiter->Process(mActions);//assigning vectors over

vectors may be un-kosher as it forgets some actions?
 //should i delete the pointers

inside the arbiter for the actions not sent forward?
 }
 else
 {
 //do nothing because this will simply pass up the behavior's and it's

 children's Actions
 }
 if (debug_time)
 {
 TotalTime =time(0);

154

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 14
502
503
504

505

506

507

508
509
510
511
512
513
514
515

516
517
518
519
520
521
522
523
524
525
526
527
528

529

530
531
532
533
534
535
536
537
538
539
540
541

 std::cout << GetName() << " had times: " << std::endl;
 std::cout <<"Total "<< TotalTime-starttime <<" seconds"<< std::endl;
 std::cout << "Pre_Condition: " << preConditionTime- starttime << "

seconds" << std::endl;
 std::cout << "Children: " << childrenTime - preConditionTime << "

seconds" << std::endl;
 std::cout << "Execute Block: " << ExecuteTime-childrenTime << "

seconds" << std::endl;
 std::cout << "Arbiter: " << TotalTime- ExecuteTime << " seconds" <<

std::endl;
 }
 return mActions;
}

/**
* This function returns the context pointer for the UBFBehavior object in
question

* @return WsfSCriptContext *
*/
WsfScriptContext * UBFBehavior::GetContextPtr()
{
 return mContextPtr;
}

/**
* This function changes the UBFBehaviors Script Context pointer
*/
void UBFBehavior::SetContextPtr(WsfScriptContext * newContextPtr)
{
 mContextPtr->Initialize(newContextPtr->GetTIME_NOW(newContextPtr-

>GetContext()),newContextPtr->GetPLATFORM(newContextPtr->GetContext
()),this);

 mContextPtr->SetParent(newContextPtr);//does this overwrite the current
UBFBehavior's Script variables though? initial tests say no but
shouldn't it?

}

/**
* This function updates the parent pointer of a UBFBehaviors Script Context
*/
void UBFBehavior::SetParentContextPtr(WsfScriptContext * newContextPtr)
{
 mContextPtr->SetParent(newContextPtr);
}

/**
* This function searchs for a UBFBehavior by name and removes it from the

155

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 15

542

543
544
545
546
547

548
549
550

551
552
553

554
555

556
557

558
559
560
561
562
563
564
565

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

current UBFBehavior's set of children. Currently there is no way to remove
 children from children dynamically.

* @Param string new_Behavior_Name is the name of an Analyst defined behavior
to be searched for.

* @return a Bool value indicating success(true)
*/
bool UBFBehavior::Remove_Behavior(std::string deleteName)
{
 std::cout << "<<<<<<ATTEMPTING TO REMOVE BEHAVIOR " << deleteName <<

std::endl;
 for (int i = 0; i < (int)mUBFChildren.size(); i++)
 {
 if (deleteName.compare(mUBFChildren[i]->GetName()) == 0)//then they

are the same
 {
 mUBFChildren.erase(mUBFChildren.begin() + i);
 std::cout << "<<<<<<FOUND and removed " << deleteName <<

std::endl;

 return true;//found one of that name so exit...I do not delete
all because the mActions object is now changed so continueing a
 for loop on it is an uncomfortable procedure.

 }
 std::cout << "<<<<<<COMAPRING " << deleteName<< " and " <<

mUBFChildren[i]->GetComponentName().GetString()<< std::endl;

 }
 return false;

}

/**
* This function adds post conditions which this behavior REMOVES from the
environment.

* @Param the string condition which is added to the list
*/
void UBFBehavior::Add_Remove_Post_Condition(std::string newCondition)
{
 mPost_Conditions_Remove.push_back(newCondition);
}

/**
* This function searches for a UBFBehavior and returns a ptr to it.
* @Param Pointer to the UBFBehavior
*/
UBFBehavior * UBFBehavior::Find(std::string oBehaviorName)
{
 if (!WsfProcessorTypes::Get(GetScenario()).Find(oBehaviorName)) {
 std::cout << "ERROR: couldn't find Behavior: " << oBehaviorName <<

156

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 16

581
582
583
584
585

586
587
588
589
590
591
592
593
594
595
596

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

std::endl;
 return false;
 }
 else
 {
 UBFBehavior* tempBehavior = static_cast<UBFBehavior*>

(WsfProcessorTypes::Get(GetScenario()).Find(oBehaviorName)->Clone
());

 if (tempBehavior != nullptr)
 {
 tempBehavior->SetName(oBehaviorName);
 return tempBehavior;
 }
 }
 return nullptr;
}

/**
* This function adds post conditions which this behavior ADDS to the
environment.

* @Param the string condition which is added to the list
*/
void UBFBehavior::Add_Adder_Post_Condition(std::string newCondition)
{
 mPost_Conditions_Add.push_back(newCondition);
}

/**
* This function adds a string to the Required data structure.
* @Param the string condition which is added to the list
*/
void UBFBehavior::Add_Required_Data(std::string newCondition)
{
 mRequiredData.push_back(newCondition);
}

/**
* This function adds a string to the Required data structure.
* @Param the string condition which is added to the list
*/
void UBFBehavior::Add_Initial_Condition(std::string newCondition)
{
 mInitialConditions.push_back(newCondition);
}
/**
* This function adds a string to the list of effected motors list.
* @Param the string condition which is added to the list
*/
void UBFBehavior::Add_Action_Setting(std::string newCondition)

157

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 17
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

{
 mActionSettings.push_back(newCondition);
}

/**
* This function adds a string to the list of effected motors list.
* @Param the string condition which is added to the list
*/
void UBFBehavior::Set_GoalAchieved(std::string newGoal)
{
 mGoalAchieved = newGoal;
}

bool UBFBehavior::Adder_Post_Condition_Exists(std::string oCondition)
{
 for each (std::string tempString in mPost_Conditions_Add)
 {
 if (oCondition.compare(tempString) == 0)
 {
 return true;
 }
 }
 return false;
}

bool UBFBehavior::Remove_Post_Condition_Exists(std::string oCondition)
{
 for each (std::string tempString in mPost_Conditions_Remove)
 {
 if (oCondition.compare(tempString) == 0)
 {
 return true;
 }
 }
 return false;
}

bool UBFBehavior::Action_Setting_Exists(std::string oSetting)
{
 for each (std::string tempString in mActionSettings)
 {
 if (oSetting.compare(tempString) == 0)
 {
 return true;
 }
 }
 return false;
}

158

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 18
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

bool UBFBehavior::Required_Data_Exists(std::string oData)
{
 for each (std::string tempString in mRequiredData)
 {
 if (oData.compare(tempString) == 0)
 {
 return true;
 }
 }
 return false;
}

bool UBFBehavior::Initial_Condition_Exists(std::string oCondition)
{
 for each (std::string tempString in mRequiredData)
 {
 if (oCondition.compare(tempString) == 0)
 {
 return true;
 }
 }
 return false;
}

std::string UBFBehavior::Get_Adder_Post_Condition_byIndex(int index)
{
 if (index < mPost_Conditions_Add.size())
 {
 return mPost_Conditions_Add[index];
 }
 return "DNE";
}

std::string UBFBehavior::Get_Remove_Post_Condition_byIndex(int index)
{
 if (index < mPost_Conditions_Remove.size())
 {
 return mPost_Conditions_Remove[index];
 }
 return "DNE";
}

std::string UBFBehavior::Get_Action_Setting_byIndex(int index)
{
 if (index < mActionSettings.size())
 {
 return mActionSettings[index];
 }

159

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 19
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

 return "DNE";
}

std::string UBFBehavior::Get_Required_Data_byIndex(int index)
{
 if (index < mRequiredData.size())
 {
 return mRequiredData[index];
 }
 return "DNE";
}

std::string UBFBehavior::Get_Initial_Condition_byIndex(int index)
{
 if (index < mInitialConditions.size())
 {
 return mInitialConditions[index];
 }
 return "DNE";
}

std::string UBFBehavior::Get_GoalAchieved()
{
 return mGoalAchieved;
}

int UBFBehavior::Adder_Post_Condition_Size()
{
 return mPost_Conditions_Add.size();
}

int UBFBehavior::Remove_Post_Condition_Size()
{
 return mPost_Conditions_Remove.size();
}

int UBFBehavior::Action_Setting_Size()
{
 return mActionSettings.size();
}

int UBFBehavior::Required_Data_Size()
{
 return mRequiredData.size();
}

int UBFBehavior::Initial_Condition_Size()
{
 return mInitialConditions.size();

160

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 20
773
774
775

776
777

778

779
780
781
782
783
784
785

786
787
788
789
790

791
792
793

794
795

796

797

798
799
800
801
802
803
804
805
806
807
808
809
810
811

}
/**
* This function searches for a UBFBehavior by name and add's it to the
current UBFBehavior's set of children.

* Currently there is no way to add children to children dynamically.
* This function should only be called via AFSIM script not from internal
UBFBehavior functions.

* @Param string new_Behavior_Name is the name of an Analyst defined behavior
to be searched for.

* @return a Bool value indicating success(true)
*/
bool UBFBehavior::Add_Behavior(std::string new_Behavior_Name)
{

 if (!WsfProcessorTypes::Get(GetScenario()).Find(new_Behavior_Name)) {
 std::cout << "ERROR: couldn't find Behavior: " << new_Behavior_Name

<< std::endl;
 return false;
 }
 else
 {
 UBFBehavior* tempBehavior = static_cast<UBFBehavior*>

(WsfProcessorTypes::Get(GetScenario()).Find(new_Behavior_Name)-
>Clone());

 if (tempBehavior!=nullptr)
 {
 UBFBehavior::getInstancePtr()->mUBFChildren.push_back

(tempBehavior);
 tempBehavior->SetName(new_Behavior_Name);
 tempBehavior->AssignMyArbiter(UBFBehavior::getInstancePtr()-

>GetContextPtr());
 tempBehavior->SetContextPtr(UBFBehavior::getInstancePtr()-

>GetContextPtr());
 if (tempBehavior->BuildOwnBehaviorTree

(UBFBehavior::getInstancePtr()->GetContextPtr(), 0))
 {
 return true;
 }
 return false;
 }
 return false;
 }
}

bool UBFBehavior::Add_Behavior(UBFBehavior * newChild)
{
 mUBFChildren.push_back(newChild);
 newChild->AssignMyArbiter(GetContextPtr());
 newChild->SetContextPtr(GetContextPtr());

161

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 21
812
813
814
815
816
817
818
819
820

821

822

823
824
825
826

827
828
829
830
831
832
833

834
835
836

837
838
839

840
841
842
843
844

845

846

847

848

 if (newChild->BuildOwnBehaviorTree(GetContextPtr(), 0))
 {
 return true;
 }
 return false;
}

/**
* This function executes the Map_To_Actions script and properly sets the
UBFBehavior singleton.

* Essentially Map_To_Actions script is where the script context has to be the
 most correct because

* this is where an Analyst will actuate on Platforms, send messages, send
commands to sub ordinates, etc.

*/
void UBFBehavior::ExecuteMapToOutputs()
{
 //Actually execute the Script from an analyst to map actions from other

behaviors to platform actions
 double retVal = 0.0;
 if (mMapToActionScriptPtr != nullptr)
 {
 UtScriptData scriptRetVal(retVal);
 UtScriptDataList scriptArgs;
 UBFBehavior::setInstancePtr(this);
 mContextPtr->ExecuteScript(mMapToActionScriptPtr, scriptRetVal,

scriptArgs);
 UBFBehavior::setInstancePtr(nullptr);
 }
 //else call default map to action method...currently this is a warning

telling the user their UBF improperly constructed
 else
 {
 std::cout << "WARNING -- MAP TO ACTION METHOD NOT DEFINED IN ROOT

BEHAVIOR" << std::endl;
 }
}

/**
* This function finds an Arbiter in the AFSIM Processor factory and assigns
it to this UBFBehavior's

* Arbiter pointer. This method also shares/sets the Arbiter pointer's script
 context intending on allowing it

* knowledge of the calling platform. The assigned Arbiter is based on the
string assigned in the ProcessInput() stage.

* @Param WsfScriptContext * is a pointer to the context of the calling/parent
 UBFBehavior allowing access to the calling platform.

* @return A bool indicating the success of this method in finding and
assigning the Arbiter.

162

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 22
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867

868
869

870
871
872

873
874
875
876
877
878
879
880
881
882
883
884
885

886
887

888

889

890

*/
bool UBFBehavior::AssignMyArbiter(WsfScriptContext* newScriptContextPtr)
{
 if (!mArbiterAssigned)
 {
 mArbiterAssigned = true;
 }
 else
 {
 std::cout << "AssignMyArbiter called twice but why!" << std::endl;
 return false;
 }

 bool myCommand = false;
 //find and assign arbiter
 if (mArbiterName.GetId() != 0)
 {
 //std::cout << "arbitername.getid() is not null" << std::endl;
 if (!WsfProcessorTypes::Get(GetScenario()).Find

(mArbiterName.GetString()))
 {
 std::cout << "couldn't find " << mArbiterName.GetString() <<

std::endl;
 return false;
 }
 Arbiter = static_cast<UBFArbiter*>(WsfProcessorTypes::Get(GetScenario

()).Find(mArbiterName.GetString())->Clone());
 Arbiter->SetContext(newScriptContextPtr);
 myCommand = true;
 }
 else {
 //assign a default arbiter
 myCommand = true;
 }
 //finished assigning arbiter
 return myCommand;
}

/**
* This function is used as a sub-ordinate of BuildOwnBehaviortrees(). The
purpose of this function is to add UBFBehavior

* children defined by a parent UBFBehavior to the child UBFBehavior.
* @Param InputTree * parent is the input tree of the parent which holds the
names of UBFBehaviors to be added to this UBFBehavior

* @Param UBFBehavior * parentbehaviorObject the object which will be assigned
 children from this function

* @Param WsfScriptContext * holds a pointer to the parent's script context in
 order to let children access platform's

* @Param int depthofTree Is used to track the depth of a tree and prevent

163

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 23

891

892
893

894
895
896
897
898

899
900
901
902
903
904
905
906
907

908

909
910
911

912

913

914

915
916

917
918
919

920
921
922
923
924

loops being created by an ANalyst
* @return a bool with the success or failure of finding/assigning/cloning
UBFBehaviors from the AFSIM processor factory.

*/
bool UBFBehavior::AddChildrenToChildren(InputTree * parent, UBFBehavior *
parentBehaviorObject, WsfScriptContext * newScriptContextPtr, int
depthOfTree)

{//should only be called when the children list for var has items in it
 depthOfTree++;
 if (depthOfTree > maxTreeDepth)
 {
 std::cout << "ERROR: MAX BEHAVIOR TREE DEPTH REACHED. CHECK BEHAVIOR

TREES FOR LOOPS or increase max tree depth" << std::endl;
 return false;
 }
 bool myCommand = true;
 for each (InputTree* var in parent->mChildren)
 {
 WsfVariable<WsfStringId> tempname = var->GetName();
 if (tempname.GetId() != 0)
 {
 if (!WsfProcessorTypes::Get(GetScenario()).Find

(tempname.GetString())) {
 std::cout << "ERROR: couldn't find Behavior: " <<

tempname.GetString() << std::endl;
 return false;
 }
 else {//then the behavior was defined so add it to this nodes

chidren list and check if it has children whih need to be added
 UBFBehavior* tempBehavior = static_cast<UBFBehavior*>

(WsfProcessorTypes::Get(GetScenario()).Find
(tempname.GetString())->Clone());

 parentBehaviorObject->mUBFChildren.push_back(tempBehavior); //
added to children list

 tempBehavior->SetContextPtr(newScriptContextPtr);//this
overwriting tempBehaviors sript variables?

 //tempBehavior->SetParentContextPtr(newScriptContextPtr);
 bool testSuccess = tempBehavior->BuildOwnBehaviorTree

(newScriptContextPtr, depthOfTree);//construct child's tree
 based on child's ProcessInput

 if (!testSuccess)
 {
 //std::cout << "Failed to add child to child " <<

std::endl;
 return false;//propogate up the failure
 }
 if (var->mChildren.size()>0)
 {
 bool success = AddChildrenToChildren(var, tempBehavior,

164

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 24

925
926
927

928
929
930
931
932
933
934
935
936
937
938
939

940
941

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

965
966
967
968

newScriptContextPtr, depthOfTree);
 if (!success)
 {
 //std::cout << "Failed to add child to child " <<

std::endl;
 return false;//propogate up the failure
 }
 }
 }
 }
 }

 return myCommand;
}

/**
* This function is used to store strings of behavior names which will later
be used to build the UBFBehavior tree of pointers.

* This first level is built by the initial calling method (processInput).
* @Param InputTree * parentPtr a pointer to the parent InputTree object which
 will get behavior names from this method

* @Param UtInput * aInput the input stream from AFIT script
*/
bool UBFBehavior::StoreChildren(InputTree * parentPtr, UtInput & aInput)
{
 bool myCommand = true;
 InputTree * lastChild = nullptr;
 std::string command;
 aInput.ReadCommand(command);
 while (command != "end_Children")
 {
 if (command == "Behavior")
 {
 std::string behaviorName;
 aInput.ReadValue(behaviorName);
 if (behaviorName.length() > 0)
 {
 std::cout << "Adding a child to a child" << std::endl;
 lastChild = new InputTree(behaviorName);
 parentPtr->mChildren.push_back(lastChild);
 }
 else
 {
 std::cout << "Read in blank or empty behavior name. This is

not allowed." << std::endl;
 return false;
 }
 }
 else if (command == "Children")

165

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 25
969
970
971
972
973
974
975
976

977
978
979
980
981
982

983
984
985
986
987
988
989
990
991
992
993
994

995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

 {
 if (lastChild != nullptr)
 {
 myCommand = StoreChildren(lastChild, aInput);
 }
 else
 {
 std::cout << "Error, to nest children lists they must be

directly under a parent and not another children flag" <<
std::endl;

 return false;
 }
 }
 else
 {
 std::cout << "Command not recognized within children block: " <<

command << std::endl;
 return false;
 }
 aInput.ReadCommand(command);
 }
 return myCommand;
}

WsfSimulation* UBFBehavior::GetSimulation()
{
 WsfPlatform* platformPtr = OwningPlatform();
 return (platformPtr != 0) ? platformPtr->GetSimulation() : mContextPtr-

>GetSimulation();
}

UtScriptContext* UBFBehavior::GetScriptAccessibleContext()
{
 return &mContextPtr->GetContext();
}

//unsure this is necessary
const char* UBFBehavior::GetScriptClassName()
{
 return "UBFBehavior";
}

WsfPlatform* UBFBehavior::OwningPlatform()
{
 if (GetPlatform() != 0)

166

C:\Users\ludam\Desktop\source\UBFBehavior.cpp 26
1014
1015
1016
1017
1018

 return GetPlatform();
 else if (WsfScriptContext::GetPLATFORM(mContextPtr->GetContext()) != 0)
 return WsfScriptContext::GetPLATFORM(mContextPtr->GetContext());
 return 0;
}

167

Appendix B. Scripts Implemented

This appendix includes the various scripts that were used to define the

2.1 Platforms and Behaviors for Tutorial Scenario

168

include_once weapons/aam/medium_range_radar_missile.txt
include_once weapons/aam/simple_mrm_with_lc.txt

include_once
processors/quantum_agents/aiai/bt_behavior_planned_route.txt
include_once
processors/quantum_agents/aiai/bt_behavior_engage_weapon_task_target.txt
include_once
processors/quantum_agents/aiai/bt_behavior_pursue_target_route_finder.txt
include_once processors/quantum_agents/aiai/behavior_pursue_target_route_finder.txt
include_once processors/quantum_agents/behavior_controller_Fusion.txt

radar_signature SIG_RADAR_ONE_M_SQUARED
 constant 1.0 m^2
end_radar_signature

antenna_pattern ESM_ANTENNA
 constant_pattern
 peak_gain 3 db
end_antenna_pattern

platform_type STRIKER WSF_PLATFORM

 #indestructible
 #icon F-22 / SU-27
 #side blue / red

 category fighter
 radar_signature SIG_RADAR_ONE_M_SQUARED

 comm cmdr_net RED_DATALINK
 network_name <local:slave>
 internal_link data_mgr
 internal_link task_mgr
 internal_link perception
 end_comm

 mover WSF_AIR_MOVER
 roll_rate_limit 1 rad/sec
 default_linear_acceleration 1.0 g
 default_radial_acceleration 6.5 g
 default_climb_rate 400 fps
 maximum_climb_rate 400 fps
 maximum_speed 600.0 knots
 minimum_speed 150.0 knots

1

.

169

 maximum_altitude 50000 ft
 minimum_altitude 50 ft
 maximum_linear_acceleration 9 g
 at_end_of_path extrapolate
 turn_rate_limit 4.0 deg/sec
 end_mover

 processor data_mgr WSF_TRACK_PROCESSOR
 purge_interval 60 sec
 report_interval 1 sec
 fused_track_reporting on
 raw_track_reporting off
 report_to commander via cmdr_net
 circular_report_rejection true
 end_processor

 weapon lc_mrm SIMPLE_MRM_WEAPON_LC
 quantity 10
 end_weapon

 weapon mrm MEDIUM_RANGE_RADAR_MISSILE
 quantity 10
 end_weapon

processor task_mgr WSF_QUANTUM_TASKER_PROCESSOR
script_debug_writes on
update_interval 5 sec
behavior_tree
selector
behavior_node bt_pursue_target_route_finder
behavior_node bt_planned_route
end_selector
behavior_node bt_engage_weapon_task_target
end_behavior_tree
end_processor
processor task_mgr WSF_QUANTUM_TASKER_PROCESSOR
 script_debug_writes off
 update_interval 1 sec

 script int GetSalvoForThreat(WsfTrack track)
 Map<string, int> ThreatTypeSalvo = Map<string, int>();
 ThreatTypeSalvo["sam"] = 2;
 ThreatTypeSalvo["ship"] = 2;
 ThreatTypeSalvo["bomber"] = 2;
 ThreatTypeSalvo["fighter"] = 1;
 ThreatTypeSalvo["FIRE_CONTROL"] = 1;
 ThreatTypeSalvo["primary_target"] = 2;

2
170

 ThreatTypeSalvo["secondary_target"] = 2;
 int DefaultAirSalvo = 1;
 int DefaultGndSalvo = 1;
 #writeln_d("checking salvo size for category: ", category);
 #WsfPlatform plat = PLATFORM.FindPlatform(track.TargetIndex());
 WsfPlatform plat = PLATFORM.FindPlatform(track.TargetName());
 if (plat.IsValid())
 {
 foreach(string aCategory : int salvo in ThreatTypeSalvo)
 {
 if(plat.CategoryMemberOf(aCategory))
 {
 writeln_d("salvo for type ", aCategory, " = ", salvo);
 return salvo;
 }
 }
 }
 #extern string GetTargetDomain(WsfTrack);
 string sTargetDomain = GetTargetDomain(track);
 if ((sTargetDomain == "LAND") || (sTargetDomain == "SURFACE"))
 {
 return DefaultGndSalvo;
 }
 return DefaultAirSalvo;
 end_script

 aux_data
 int weaponIndex;
 string tempIDName;
 int tempIDInt;

 end_aux_data
 on_initialize
 SetAuxData("weaponIndex",-1);
 end_on_initialize
 execute at_interval_of 1 sec

 end_execute

 end_processor#end quantumtasker

 processor rootNode UBFBehavior
 #Debug_Time

3
171

 update_interval 10 sec
 script_variables
 //Example of variables that could be set for access in
 //this behavior's Execute or Map to action OR pre condition blocks.

 end_script_variables
 Map_To_Action
 #writeln("MTA");
 if(UBFBehavior.Get_Number_Of_Actions()==0){
 return;#no actions so do nothing
 }
 UBFActionList RouteList = UBFBehavior.Get_Actions_By_partial_Name("Route");
 if(RouteList.Get_Number_Of_Actions()>1)
 #then atleast one route lat long pair received
 {
 int routeSize =-1;
 int routeStart =-1;

 Array<double> latitudes, longitudes, altitudes;
 UBFActionList routeLatitutes =
 RouteList.Get_Actions_By_Exact_Name("RouteLat");
 UBFActionList routeLongitudes =
 RouteList.Get_Actions_By_Exact_Name("RouteLong");

 latitudes = Array<double>();

 for(int ii=0;ii<routeLatitutes.Get_Number_Of_Actions();ii=ii+1)
 {#extract latitudes
 UBFAction tempAction = routeLatitutes.Get_Action_By_Index(ii);
 latitudes.Set(tempAction.Get_Priority(),tempAction.Get_Double());

 }
 longitudes = Array<double>();
 altitudes = Array<double>();

 for(int ii=0;ii<routeLongitudes.Get_Number_Of_Actions();ii=ii+1)
 {#extract latitudes and altitudes
 UBFAction tempAction = routeLongitudes.Get_Action_By_Index(ii);
 longitudes.Set(tempAction.Get_Priority(),tempAction.Get_Double());
 altitudes.Set(tempAction.Get_Priority(),tempAction.Get_Int());
 }

 UBFActionList routeStartList =
 RouteList.Get_Actions_By_Exact_Name("RouteStart");
 if(routeStartList!=null)
 {
 if(routeStartList.Get_Number_Of_Actions()>0)

4
172

 {#requires arbiters giving this to insure
 //there is only one set of route waypoints
 routeStart=routeStartList.Get_Action_By_Index(0).Get_Priority();
 routeSize = routeStartList.Get_Action_By_Index(0).Get_Double();
 }
 }
 if(routeSize<latitudes.Size())
 {
 #then the analyst may not want to go to the end of the route actions given
 }
 else
 {
 routeSize=latitudes.Size();#prevents reading past the end of the arrays
 }
 if(latitudes.Size()!=longitudes.Size())
 {
 routeSize=0;
 writeln("route array mismatch check logic generating routes");
 }
 if(routeSize==-1)
 {
 routeSize=2;
 }

 #set current position to the first route point
 longitudes.Set(0, PLATFORM.Longitude());
 latitudes.Set(0, PLATFORM.Latitude());
 altitudes.Set(0, PLATFORM.Altitude());

 WsfRoute newRoute=WsfRoute();

 for(int ii=0;ii<routeSize;ii=ii+1)
 {
 newRoute.Append(WsfGeoPoint.Construct(latitudes.Get(ii),
 longitudes.Get(ii),altitudes.Get(ii)), 450.0);
 }
 if((newRoute.Size()>0)&&(newRoute.IsValid()))
 {
 if(routeStart!=-1)
 {
 if(routeStart>=newRoute.Size())
 {
 PLATFORM.FollowRoute(newRoute);
 }

5
173

 else
 {
 PLATFORM.FollowRoute(newRoute, routeStart);
 }

 }
 else
 {
 PLATFORM.FollowRoute(newRoute);
 # writeln("follow route");
 }

 }

 }

 UBFActionList wpnList = UBFBehavior.Get_Actions_By_Exact_Name("Weapon");
 if(wpnList.Get_Number_Of_Actions()>0)
 {
 UBFAction wpnAction =wpnList.Get_Action_By_Index(0);
 if(wpnAction==null)
 return;
 int weaponIndex=(int)wpnAction.Get_Double();

 WsfWeapon wpn = PLATFORM.WeaponEntry(weaponIndex);
 WsfTrackId tempID=
 WsfTrackId.Construct(wpnAction.Get_String(), wpnAction.Get_Int());
 WsfLocalTrack targetTrack = PLATFORM.MasterTrackList().FindTrack(tempID);
 writeln("targetTrack ; "+targetTrack.TargetName());
 #wpn.Fire(targetTrack.Target().MakeTrack());
 if(wpn.Name()!="mrm1")
 {

 PLATFORM.Processor("task_mgr").SetAuxData("weaponIndex", weaponIndex);
 PLATFORM.Processor("task_mgr").SetAuxData("tempIDName", tempID.Name());
 PLATFORM.Processor("task_mgr").SetAuxData("tempIDInt",tempID.Number());
 wpn.Fire(targetTrack);
 }

 }
 # UBFBehavior.Add_Action(UBFAction.Create("21",1213,22));

 #writeln("actions: "+(string)UBFBehavior.Get_Number_Of_Actions());
 end_Map_To_Action

 Execute
 #Empty because this Behavior is being

6
174

 #used to show an example Map To Action block.
 # WsfRouteFinder mRouteFinder = WsfRouteFinder(); did this work before?

 end_Execute
 #Arbiter CopyAll#Default Arbiter passes all actions
 #up to Map to action block or parent behaviors

 Children #list of the children that this behavior has
 Behavior B_UBF_Engage_Task_With_Weapon
 Behavior B_UBF_SelectMovement
 end_Children
 end_processor

 processor perception WSF_PERCEPTION_PROCESSOR
 on
 script_debug_writes off
 report_interval 5 sec
 reporting_self true
 report_to commander:peers via cmdr_net
 asset_perception status_messages
 end_processor

 sensor geo_sensor WSF_GEOMETRIC_SENSOR
 on
 azimuth_field_of_view -180.0 degrees 180.0 degrees
 elevation_field_of_view -90.0 degrees 90.0 degrees
 minimum_range 0 m
 #maximum_range 277800 m //about 150 nm
 maximum_range 175940 m //about 95 nm
 frame_time 0.5 sec
 reports_location
 reports_velocity
 reports_iff
 track_quality 1.0
 internal_link data_mgr
 ignore_same_side
 end_sensor

end_platform_type

7
175

processor B_UBF_SelectMovement UBFBehavior
#This Behavior is meant to take multiple
#Behaviors recommendations of Routes and
combine them into one set of UBFAction
#Recommendations for the parent UBFBehavior to implement.
#INPUT/OUTPUT:
#N/A-passes up all UBFActions given. Children
#should only send up recommendations if others arent or
#this arbiter needs to change.

 # Execute
 #This Behavior is used as a logical connector
 #of other Behaviors so it doesnt need an Execute block
 # end_Execute

 Arbiter CopyAllActionsUp
 Children
 Behavior B_UBF_Planned_Route
 Behavior B_UBF_PursueTarget
 end_Children
end_processor

1

.

176

processor B_UBF_PursueTarget UBFBehavior
#This Behavior is meant to produce waypoints
#as Actions based on a target from a task
#EXPECTATIONS: parent platform has a
#QuantumTaskerProcessor with name "task_mgr"
#INPUT: N/A
#OUTPUT:
Name || RouteLat/RouteLong
Priority || waypoint's index in the route
double || Lat or Long
int || altitude only for routeLong

 script_variables
 //expected global externs
 #extern Array<WsfGeoPoint> gAvoidPoints;
 #extern Array<double> gAvoidRadii;
 double cDEFAULT_ALTITUDE = 9144; // ~30,000 feet
 # WsfRouteFinder mRouteFinder = WsfRouteFinder();
 bool mDebugDraw = true;
 WsfGeoPoint mTargetPoint;
 string aTarget;
 double mTargetSpeed = 300; //300 ms (~600 knots)
 bool mForceRePath = true;

 WsfGeoPoint mCurrentAvoidancePt = WsfGeoPoint();
 WsfRoute mCurrentRoute = WsfRoute();
 UBFAction actionTarget, actionTarget1 ;
 end_script_variables

 Execute
mRouteFinder.SetImpossibleRouteResponse("SHIFT");
mRouteFinder.SetMaxArcLength(1852*5); //max of 5 mile long arcs
 WsfQuantumTaskerProcessor proc =
 (WsfQuantumTaskerProcessor)PLATFORM.Processor("task_mgr");

 #-------Precondition portion----------
 if (!proc.IsA_TypeOf("WSF_QUANTUM_TASKER_PROCESSOR")&&proc!=null)
 {
 return;
 }

 WsfTaskList tasks =
 ((WsfQuantumTaskerProcessor)proc).TasksReceivedOfType("WEAPON");
 if (tasks.Count() <= 0)
 {
 return;#no tasks so do nothing

1

.

177

 }

 aTarget="";
 double desiredAlt;
 for (int i=0; i<tasks.Count(); i=i+1)
 {
 WsfTask task = tasks.Entry(i);
 WsfLocalTrack aTrack =
 PLATFORM.MasterTrackList().FindTrack(task.LocalTrackId());

 if (aTrack.IsValid())
 {
 //check if the target platform is terminated
 # if (aTrack.Target()!=NULL) #Can not access atarget.Target()
 # {
((WsfQuantumTaskerProcessor)proc).SetTaskComplete(task, "SUCCESSFUL");
continue;
 #if target is deleted then it should no longer be a task for this platform
 # }
 mTargetPoint = aTrack.CurrentLocation();
 # writeln("Current target Name"+aTrack.TargetName());
 //set altitude

 desiredAlt = MATH.Max(PLATFORM.Altitude(),
 MATH.Max(cDEFAULT_ALTITUDE, mTargetPoint.Altitude()));
 mTargetPoint.Set(mTargetPoint.Latitude(),
 mTargetPoint.Longitude(), desiredAlt);
 aTarget = aTrack.TargetName();
 break;
 }
 }

 if(aTarget=="")
 {
 return;#no valid target so return
 }

 // if we are more than 2 seconds away from our target
 if (mForceRePath || PLATFORM.SlantRangeTo(mTargetPoint) > (3*mTargetSpeed))
 {#only send an action up if it is further than 2 seconda way
 double linearAccel = 7.5 * Earth.ACCEL_OF_GRAVITY();

 actionTarget = UBFAction.Create("RouteLat", 1, 1,mTargetPoint);
 actionTarget.Set_String(aTarget);
 actionTarget.Set_Double(mTargetPoint.Latitude());

2
178

 actionTarget1 = UBFAction.Create("RouteLong", 1,1, mTargetPoint);
 actionTarget1.Set_String(aTarget);
 actionTarget1.Set_Double(mTargetPoint.Longitude());
 actionTarget1.Set_Int(desiredAlt);
 UBFBehavior.Add_Action(actionTarget);
 UBFBehavior.Add_Action(actionTarget1);
 }
 end_Execute

end_processor

3
179

processor B_UBF_Planned_Route UBFBehavior
#This Behavior is meant to produce waypoints as
#Actions based on the platform not having a route active
#EXPECTATIONS: parent platform has a
#QuantumTaskerProcessor with name "task_mgr"
#INPUT: N/A
#OUTPUT:
Name || RouteLat/RouteLong
Priority || waypoint's index in the route
double || Lat/Long
int || altitude only for routeLong
#----
Name || RouteStart
Priority || starting point for route index
double || route.size()

 script_variables
 bool mDrawRoute = false;
 double cDEFAULT_SPEED = 450.0 * MATH.MPS_PER_NMPH();
 double cDEFAULT_ACCEL = 7.5 * Earth.ACCEL_OF_GRAVITY(); // 7.5 G (m/s^2)
 end_script_variables

 Execute
 WsfMover aMover = PLATFORM.Mover();

 if(aMover.IsValid())
 {
 if(aMover.IsExtrapolating())
 {#then all other routes have ended and the platform needs
 #a new one or it will extrapolate(fly straight)
 # writeln(PLATFORM.Name(), " is Extrapolating");
 WsfGeoPoint pt = PLATFORM.Location();
 WsfRoute ro = aMover.DefaultRoute().Copy();
 #now we have a modifiable route
 if (!ro.IsValid())
 return;

 WsfGeoPoint close = ro.LocationAtDistance(ro.DistanceAlongRoute(pt));
 if (!close.IsValid()) {
 return;
 }
 close.SetAltitudeAGL(pt.Altitude());

 double d1 = ro.DistanceFromRoute(pt);
 double d2 = pt.GroundRangeTo(close);
 double d3 = -1;

1

.

180

 Array<double> turnRad = aMover.PropertyDouble("turn_radius");
 if (turnRad.Size() > 0) {
 d3 = 2*turnRad[0];
 }
 int i = 0;
 for (; i < ro.Size(); i = i+1)#FIND THE CLOSEST POINT
 #TO ME AND DIRECT ME TO IT
 {
 WsfWaypoint wpt = ro.Waypoint(i);
 WsfGeoPoint rpt = wpt.Location();
 //check if we are close to an existing waypoint,
 #if so... break & fly at that one
 if (rpt.GroundRangeTo(close) < 926) {
 break;
 }
 double dist = ro.DistanceAlongRoute(rpt);
 if (dist > d1) {
 if (d2 > d3) {
 ro.Insert(i, WsfWaypoint.Create(close, wpt.Speed()));
 }
 break;
 }
 }

 if (i >= ro.Size()) {
 i = ro.Size() - 1;
 }
 //go at default speed; this gets overwritten if route
 #waypoint has defined a speed
 UBFBehavior.Add_Action(UBFAction.Create("Speed",1,1,cDEFAULT_SPEED));
 UBFBehavior.Add_Action(UBFAction.Create("Accell",1,1,cDEFAULT_ACCEL));
 UBFAction routeStartAction =
 UBFAction.Create("RouteStart",i,1,ro.Size());
 UBFBehavior.Add_Action(routeStartAction);

 #Add all the points of the route
 int index=0;
 for (; index < ro.Size(); index = index+1)
 {
 WsfWaypoint tempPoint=ro.Waypoint(index);
 UBFAction tempLatAction =
 UBFAction.Create("RouteLat",index,1,tempPoint.Latitude());
 UBFAction tempLongAction =
 UBFAction.Create("RouteLong",index,1,tempPoint.Longitude());
 tempLongAction.Set_Int(tempPoint.Altitude());

2
181

 UBFBehavior.Add_Action(tempLatAction);
 UBFBehavior.Add_Action(tempLongAction);
 }
 }
 }
 else
 {
 writeln("invalid mover on platform: "+PLATFORM.Name());
 }
 end_Execute
end_processor

3
182

processor B_UBF_GenerateTargetsFromTasks UBFBehavior
#This Behavior is meant to pass up target recommendations based
#on the tasks assigned to this platform
#Dependancy: parent platform has a QuantumTaskerProcessor
#with name "task_mgr"
#INPUT: all children input will be passed forward
#OUTPUT: UBFActions with
Name || Target
Priority || 2
int || WsfTrackId.Number()
string || WsfTrackId.Name()

 Frequency 11
 Execute

 //specify orientation limits for shooting
 //dont shoot if rolled more/less than this
 double mMaxFiringRollAngle = 10.0;
 //dont shoot if pitched more than this
 double mMaxFiringPitchAngle = 15.0;
 //dont shoot if pitched less than this
 double mMinFiringPitchAngle = -10.0;
 bool mCoopEngageOne = false;

 double pitch = PLATFORM.Pitch();
 WsfQuantumTaskerProcessor proc =
 (WsfQuantumTaskerProcessor)PLATFORM.Processor("task_mgr");
 if(!proc.IsValid())
 {
 writeln_d("Invalid Processor on platform, no weapons will fire");
 }

 WsfTaskList tasks = proc.TasksReceivedOfType("WEAPON");
 if (MATH.Fabs(PLATFORM.Roll()) > mMaxFiringRollAngle ||
 pitch > mMaxFiringPitchAngle ||
 pitch < mMinFiringPitchAngle)
 {
 string msgStr = write_str(" ", PLATFORM.Name(),
 " orientation too far off to fire! (roll or pitch)");
 writeln_d(msgStr);
 return;#return nothing since you are turning too much to fire
 }

 if(tasks.Count()==0)
 {

1

.

183

 return;#No tasks so nothing for this behavior to attack.
 }

 foreach (WsfTask task in tasks)
 {
 WsfLocalTrack targetTrack =
 PLATFORM.MasterTrackList().FindTrack(task.LocalTrackId());
 if (targetTrack.IsNull() || !targetTrack.IsValid())
 {
 writeln_d("target track not valid");
 continue;
 }

 #Copied from example code-I think this
 #checks if the target is also from a sensor or not
 #Hence, this behavior will not return
 #a target if the platform already sensed it
 if (mCoopEngageOne == false)
 {
 WsfLocalTrack targetLocalTrack = (WsfLocalTrack)targetTrack;
 if (targetLocalTrack.IsValid())
 {
 if(!targetLocalTrack.ContributorOf(PLATFORM) &&
 !targetLocalTrack.IsPredefined())
 {
 return;
 }
 }
 }

string nameholder=task.LocalTrackId().Name();
int idholder = task.LocalTrackId().Number();
 writeln("Weapons Pending : " +
 (string)PLATFORM.WeaponsPendingFor(task.LocalTrackId()));
 writeln("Weapons active : " +
 (string)PLATFORM.WeaponsActiveFor(task.LocalTrackId()));
 writeln(task.LocalTrackId().ToString());
 if ((PLATFORM.WeaponsPendingFor(task.LocalTrackId()) +
 PLATFORM.WeaponsActiveFor(task.LocalTrackId())) > 0)
 {
 writeln("already have weapons assigned for target track");
 continue;
 }
 #Now add action objects as this UBFBehaviors recommendations
 UBFAction a =

2
184

 UBFAction.Create("Target", 2, 1,task.LocalTrackId().Name());
 a.Set_Int(task.LocalTrackId().Number());
 UBFBehavior.Add_Action(a);
 }#END-foreach (WsfTask task in tasks)

 end_Execute

 Arbiter UBF_A_CheckTrackQualityWeaponsPending
end_processor

3
185

processor B_UBF_AddValidWeaponsToTargets UBFBehavior
#This Behavior is meant to take multiple Behaviors recommendations of Targets and
#assign weapons to them only passing up the first valid combination found
#EXPECTATIONS: parent platform has a QuantumTaskerProcessor with name "task_mgr"
#INPUT:
Name || Target
Priority || n/a
int || WsfTrackId.Number()
string || WsfTrackId.Name()

#OUTPUT: UBFActions from the UBFArbiter, Execute block is empty
Name || Weapon
Priority || n/a
int || WsfTrackId.Number()
string || WsfTrackId.Name()
Double || weapon index
 Execute

 end_Execute

 Arbiter UBF_A_AssignWeaponFromFirstTarget
 Children
 Behavior B_UBF_GenerateTargetsFromTasks
 end_Children
end_processor

1

.

186

2.2 Platforms and Behaviors for Tuning Scenario

187

New file created by AFSIM IDE
include_once Platforms/Striker_Type_Emergence.txt

#Default Route for Blue aircraft that gets modified by each individual Plane
route cap_orbit
 label start
 offset 20 0 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 20 5 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 0 5 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 0 0 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 goto start
end_route
platform Blu0 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 27000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp); f.End();
 end_execute
end_platform

platform Blu1 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();

1

.

188

 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp);
 f.End();
 end_execute
 route
 position 30:02n 81:35:32.42w
 altitude 35000 feet
 transform_route cap_orbit reference_heading 180.0 deg
 end_route
end_platform

platform Blu2 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 27000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp); f.End();
 end_execute
end_platform

platform Blu3 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 28000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp); f.End();
 end_execute
end_platform
platform Blu4 STRIKER_Emergence

2
189

 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 29000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp); f.End();
 end_execute
end_platform
platform Blu5 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 30000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp); f.End();
 end_execute
end_platform
platform Blu6 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 31000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);

3
190

 f.Vertex(newp); f.End();
 end_execute
end_platform
platform Blu7 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 32000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp); f.End();
 end_execute
end_platform
platform Blu8 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 33000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));
 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp); f.End();
 end_execute
end_platform
platform Blu9 STRIKER_Emergence
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 altitude 34000 feet
 execute at_interval_of 10 sec
 WsfDraw f=WsfDraw();
 f.SetTextSize(20);
 f.SetColor(0,0,0);
 f.SetId(PLATFORM.Name().Strip("Blu"));

4
191

 f.Erase(PLATFORM.Name().Strip("Blu"));
 f.BeginText(PLATFORM.Name().Strip("Blu"));
 WsfGeoPoint newp= PLATFORM.Location();
 newp.SetAltitudeAGL(newp.Altitude()+50);
 f.Vertex(newp); f.End();
 end_execute
end_platform

5
192

radar_signature SIG_RADAR_ONE_M_SQUARED
 constant 1.0 m^2
end_radar_signature

platform_type STRIKER_Emergence WSF_PLATFORM
 category fighter
 radar_signature SIG_RADAR_ONE_M_SQUARED

 sensor geo_sensor WSF_GEOMETRIC_SENSOR
 on
 azimuth_field_of_view -180.0 degrees 180.0 degrees
 elevation_field_of_view -90.0 degrees 90.0 degrees
 minimum_range 0 m
 #maximum_range 277800 m //about 150 nm
 maximum_range 175940 m //about 95 nm
 frame_time 0.5 sec
 reports_location
 reports_velocity
 reports_iff
 track_quality 1.0
 internal_link data_mgr
 ignore_same_side
 end_sensor

 processor data_mgr WSF_TRACK_PROCESSOR
 purge_interval 60 sec
 report_interval 1 sec
 fused_track_reporting on
 raw_track_reporting off
 circular_report_rejection true
 end_processor

 mover WSF_AIR_MOVER
 roll_rate_limit 1 rad/sec
 default_linear_acceleration 1.0 g
 default_radial_acceleration 6.5 g
 default_climb_rate 400 fps
 maximum_climb_rate 400 fps
 maximum_speed 600.0 knots
 minimum_speed 150.0 knots
 maximum_altitude 50000 ft
 minimum_altitude 50 ft
 maximum_linear_acceleration 9 g
 at_end_of_path extrapolate
 turn_rate_limit 4.0 deg/sec
 end_mover

1

.

193

 processor rootNode UBFBehavior
 update_interval 10 sec
 Map_To_Action
 if(UBFBehavior.Get_Number_Of_Actions()==0)
 {
 return;
 }
 UBFActionList RouteList = UBFBehavior.Get_Actions_By_partial_Name("Route");

 if(RouteList.Get_Number_Of_Actions()>0)
 {
 #construct array of points
 Array<WsfGeoPoint> points;
 points = Array<WsfGeoPoint>();
 for(int ii=0;ii<RouteList.Get_Number_Of_Actions();ii=ii+1)
 {
 UBFAction tempAction = RouteList.Get_Action_By_Index(ii);
 points.Set(tempAction.Get_Int(),tempAction.Get_Geo_Point());# *.Set(index,value)
 }
 #current position as start
 points.Set(0,PLATFORM.Location());
 WsfRoute newRoute =WsfRoute();
 for(int ii=0;ii<points.Size();ii=ii+1)
 {
 newRoute.Append(points.Get(ii),450.0);
 }

 if((newRoute.Size()>0)&&(newRoute.IsValid()))
 {
 PLATFORM.FollowRoute(newRoute);
 }
 }
 end_Map_To_Action
 Children
 Behavior EmergenceNormalize
 end_Children
 end_processor
end_platform_type

2
194

processor Emergence UBFBehavior
 Arbiter Fusion_Vote_GeoPoint
 Children
 Behavior FlyAwayFromObstacle
 Behavior FlyAtPoint
 end_Children
end_processor

1

.

195

processor EmergenceNormalize UBFBehavior
 Execute
 if(UBFBehavior.Get_Number_Of_Actions()>0)
 {
 UBFAction tempAction=UBFBehavior.Get_Action_By_Index(0);
 WsfGeoPoint tempPt=tempAction.Get_Geo_Point();
 Vec3 toPt=Vec3.Construct(PLATFORM.Latitude()-tempPt.Latitude(),
 PLATFORM.Longitude()-tempPt.Longitude(),
 0);
 toPt=toPt.Normal();
 WsfGeoPoint newPt=
 WsfGeoPoint.Construct(PLATFORM.Latitude()-toPt.X(),
 PLATFORM.Longitude()-toPt.Y(),
 PLATFORM.Altitude());
 UBFAction newAction = UBFAction.Create(tempAction.Get_Name(),
 tempAction.Get_Priority(),
 tempAction.Get_Vote(),
 newPt);
 newAction.Set_Int(1);
 if(UBFBehavior.Delete_Action_By_Name(tempAction.Get_Name()))
 {
 UBFBehavior.Add_Action(newAction);
 }
 }
 end_Execute
 Children
 Behavior Emergence
 end_Children
end_processor

1

.

196

#This behavior is meant to show behavioral emergence
processor FlyAtPoint UBFBehavior
script_variables
 bool home=false;
end_script_variables
 Execute
 WsfGeoPoint goalPoint =WsfGeoPoint.Construct(30,-79,10668);
 Vec3 toGoal = Vec3.Construct(PLATFORM.Latitude()-goalPoint.Latitude(),
 PLATFORM.Longitude()-goalPoint.Longitude(),
 0);
 toGoal=toGoal.Normal();
 goalPoint = WsfGeoPoint.Construct(PLATFORM.Latitude()-toGoal.X(),
 PLATFORM.Longitude()-toGoal.Y(),
 0);
 UBFAction destinationAction = UBFAction.Create("Route",1,1, goalPoint);
 destinationAction.Set_Int(1);#this is the index of the point it should fly to
 UBFBehavior.Add_Action(destinationAction);
 if(WsfGeoPoint.Construct(30,-79,10668).GroundRangeTo(
 PLATFORM.Location())<25000 && !home)
 {
 writeln(PLATFORM.Name()+" Reached GOAL AT1: " + (string)TIME_NOW);
 home=true;
 }
 end_Execute
end_processor

1

.

197

#This behavior is meant to show behavioral emergence
processor FlyAwayFromObstacle UBFBehavior
 Execute
 WsfGeoPoint choice;
 double currentHeading= PLATFORM.Heading();
 double choiceDist=-1;
 WsfGeoPoint obstacle = WsfGeoPoint.Construct(30,-80,1000);
 WsfGeoPoint platPoint= PLATFORM.Location();
 WsfGeoPoint currentDirectionPt=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading)/7,
 platPoint.Altitude()),
 turnDirRight=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading-90)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading-90)/7,
 platPoint.Altitude()),
 turnDirLeft=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading+90)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading+90)/7,
 platPoint.Altitude());
 double obstacleTo1dist= obstacle.GroundRangeTo(currentDirectionPt),
 obstacleTo2dist= obstacle.GroundRangeTo(turnDirRight),
 obstacleTo3dist= obstacle.GroundRangeTo(turnDirLeft);
 if(obstacleTo1dist>=obstacleTo2dist && obstacleTo1dist >= obstacleTo3dist)
 {
 choiceDist=obstacleTo1dist;
 choice=currentDirectionPt;
 }
 else if(obstacleTo2dist>=obstacleTo1dist && obstacleTo2dist >= obstacleTo3dist
 {
 choiceDist=obstacleTo2dist;
 choice=turnDirRight;
 }
 else
 {
 choiceDist=obstacleTo3dist;
 choice=turnDirLeft;
 }
 int vote=(int)PLATFORM.Name().Strip("Blu");
 UBFAction destinationAction = UBFAction.Create("Route",1,vote, choice);
 destinationAction.Set_Int(1);#this is the index of the point it should fly to
 UBFBehavior.Add_Action(destinationAction);
 end_Execute
end_processor

1

.

198

include_once Platforms/Striker_Type_Behavior_Tree.txt

#Default Route for Blue aircraft that gets modified by each individual Plane
route cap_orbit_BT
 label start
 offset 20 0 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 20 5 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 0 5 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 0 0 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 goto start
end_route

platform BlueLead_BT STRIKER_Behavior_Tree
 side blue
 icon F-18
 position 30:02n 81:35:32.42w

 route
 position 30:02n 81:35:32.42w
 altitude 35000 feet
 transform_route cap_orbit_BT reference_heading 180.0 deg
 end_route
end_platform

1

.

199

radar_signature SIG_RADAR_ONE_M_SQUARED_BT
 constant 1.0 m^2
end_radar_signature

platform_type STRIKER_Behavior_Tree WSF_PLATFORM

 category fighter
 radar_signature SIG_RADAR_ONE_M_SQUARED_BT

 sensor geo_sensor WSF_GEOMETRIC_SENSOR
 on
 azimuth_field_of_view -180.0 degrees 180.0 degrees
 elevation_field_of_view -90.0 degrees 90.0 degrees
 minimum_range 0 m
 #maximum_range 277800 m //about 150 nm
 maximum_range 175940 m //about 95 nm
 frame_time 0.5 sec
 reports_location
 reports_velocity
 reports_iff
 track_quality 1.0
 internal_link data_mgr
 ignore_same_side
 end_sensor

 processor data_mgr WSF_TRACK_PROCESSOR
 purge_interval 60 sec
 report_interval 1 sec
 fused_track_reporting on
 raw_track_reporting off
 circular_report_rejection true
 end_processor

 execute at_interval_of 10 sec
 WsfDraw draw = WsfDraw();
 draw.SetId(10);
 draw.Erase(10);
 draw.SetEllipseMode("line");
 draw.BeginCircle(0, 25000.0);
 WsfGeoPoint obstacle = WsfGeoPoint.Construct(30,-80,1000);
 draw.Vertex(obstacle);
 draw.End();
 draw.BeginCircle(0, 20000.0);
 WsfGeoPoint Goal = WsfGeoPoint.Construct(30,-79,1000);
 draw.Vertex(Goal);
 draw.SetTextSize(20);
 draw.SetColor(0,0,0);

1

.

200

 draw.BeginText("GOAL");
 draw.Vertex(Goal);
 draw.End();
 end_execute

 mover WSF_AIR_MOVER
 roll_rate_limit 1 rad/sec
 default_linear_acceleration 1.0 g
 default_radial_acceleration 6.5 g
 default_climb_rate 400 fps
 maximum_climb_rate 400 fps
 maximum_speed 600.0 knots
 minimum_speed 150.0 knots
 maximum_altitude 50000 ft
 minimum_altitude 50 ft
 maximum_linear_acceleration 9 g
 at_end_of_path extrapolate
 turn_rate_limit 4.0 deg/sec
 end_mover

 processor BT WSF_SCRIPT_PROCESSOR
 update_interval 10 sec
 behavior_tree
 selector
 behavior_node FlyAwayFromObstacleBT
 behavior_node FlyAtPointBT
 end_selector
 end_behavior_tree
 end_processor
end_platform_type

2
201

behavior FlyAtPointBT
 script_variables
 bool home=false;
 end_script_variables
 precondition
 return true;
 end_precondition
 execute
 WsfGeoPoint goalPoint =WsfGeoPoint.Construct(30,-79,10668);
 PLATFORM.GoToSpeed(450.0);
 PLATFORM.GoToLocation(goalPoint);
 if(goalPoint.GroundRangeTo(PLATFORM.Location())<25000 &&!home)
 {
 writeln(PLATFORM.Name()+" Reached GOAL AT: " + (string)TIME_NOW);
 home=true;
 }
 end_execute
end_behavior

1

.

202

behavior FlyAwayFromObstacleBT
 precondition
 WsfGeoPoint obstacle = WsfGeoPoint.Construct(30,-80,1000);
 if(obstacle.GroundRangeTo(PLATFORM.Location())<25000)
 {
 return true;
 }
 return false;
 end_precondition
 execute
 WsfGeoPoint choice;
 double currentHeading= PLATFORM.Heading();
 double choiceDist=-1;
 WsfGeoPoint obstacle = WsfGeoPoint.Construct(30,-80,10668);
 WsfGeoPoint platPoint= PLATFORM.Location();
WsfGeoPoint currentDirectionPt=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading)/7,
 platPoint.Altitude()),
turnDirRight=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading-90)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading-90)/7,
 platPoint.Altitude()),
turnDirLeft=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading+90)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading+90)/7,
 platPoint.Altitude());
 double obstacleTo1dist= obstacle.GroundRangeTo(currentDirectionPt),
 obstacleTo2dist= obstacle.GroundRangeTo(turnDirRight),
 obstacleTo3dist= obstacle.GroundRangeTo(turnDirLeft);
 if(obstacleTo1dist>=obstacleTo2dist && obstacleTo1dist >= obstacleTo3dist)
 {
 choiceDist=obstacleTo1dist;
 choice=currentDirectionPt;
 }
 else if(obstacleTo2dist>=obstacleTo1dist && obstacleTo2dist >= obstacleTo3dist
 {
 choiceDist=obstacleTo2dist;
 choice=turnDirRight;
 }
 else
 {
 choiceDist=obstacleTo3dist;
 choice=turnDirLeft;
 }
 PLATFORM.GoToSpeed(450.0);

1

.

203

 PLATFORM.GoToLocation(choice);
 end_execute
end_behavior

2
204

2.3 Platforms and Behaviors for Swarm Scenario

205

include_once Platforms/Striker_Type_Swarming.txt

#Default Route for Blue aircraft that gets modified by each individual Plane
route cap_orbit_Swarmer
 label start
 offset 20 0 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 20 5 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 0 5 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 offset 0 0 km speed 450 kts altitude 35000 ft msl
 radial_acceleration 2 g
 goto start
end_route

platform BlueLead_Swarmer STRIKER_Swarmer
 side blue
 icon F-18
 position 30:02n 81:35:32.42w
 route
 position 30:02n 81:35:32.42w
 altitude 35000 feet
 transform_route cap_orbit_Swarmer reference_heading 180.0 deg
 end_route
end_platform

platform Blue2 STRIKER_Swarmer
 side blue
 icon F-18
 position 30:03n 81:35:32.42w
 altitude 35000 ft
end_platform

platform Blue3 STRIKER_Swarmer
 side blue
 icon F-18
 position 30:04n 81:35:32.42w
 altitude 35000 ft
end_platform

platform Blue4 STRIKER_Swarmer
 side blue
 icon F-18
 position 33:04n 79:35:32.42w
 altitude 35000 ft

1

.

206

end_platform

platform Blue5 STRIKER_Swarmer
 side blue
 icon F-18
 position 30:00n 79:00:00.42w
 altitude 35000 ft
end_platform

platform Blue6 STRIKER_Swarmer
 side blue
 icon F-18
 position 31:04n 29:35:32.42w
 altitude 35000 ft
end_platform

2
207

radar_signature SIG_RADAR_ONE_M_SQUARED
 constant 1.0 m^2
end_radar_signature

platform_type STRIKER_Swarmer WSF_PLATFORM

 category fighter
 radar_signature SIG_RADAR_ONE_M_SQUARED

 sensor geo_sensor WSF_GEOMETRIC_SENSOR
 on
 azimuth_field_of_view -180.0 degrees 180.0 degrees
 elevation_field_of_view -90.0 degrees 90.0 degrees
 minimum_range 0 m
 maximum_range 500800 m //about 150 nm
 #maximum_range 175940 m //about 95 nm
 frame_time 0.5 sec
 reports_location
 reports_velocity
 reports_iff
 track_quality 1.0
 internal_link data_mgr
 end_sensor

 processor data_mgr WSF_TRACK_PROCESSOR
 purge_interval 60 sec
 report_interval 1 sec
 fused_track_reporting on
 raw_track_reporting off
 circular_report_rejection true
 end_processor

 mover WSF_AIR_MOVER
 roll_rate_limit 1 rad/sec
 default_linear_acceleration 1.0 g
 default_radial_acceleration 6.5 g
 default_climb_rate 400 fps
 maximum_climb_rate 400 fps
 maximum_speed 600.0 knots
 minimum_speed 150.0 knots
 maximum_altitude 50000 ft
 minimum_altitude 50 ft
 maximum_linear_acceleration 9 g
 at_end_of_path extrapolate
 turn_rate_limit 4.0 deg/sec

1

.

208

 end_mover

 processor rootNode UBFBehavior
 update_interval 10 sec
 Map_To_Action
 if(UBFBehavior.Get_Number_Of_Actions()==0)
 {
 return;
 }
 UBFActionList RouteList = UBFBehavior.Get_Actions_By_partial_Name("Route");

 if(RouteList.Get_Number_Of_Actions()>0)
 {
 #construct array of points
 Array<WsfGeoPoint> points;
 points = Array<WsfGeoPoint>();
 for(int ii=0;ii<RouteList.Get_Number_Of_Actions();ii=ii+1)
 {
 UBFAction tempAction = RouteList.Get_Action_By_Index(ii);
 points.Set(tempAction.Get_Int(),tempAction.Get_Geo_Point());# *.Set(index,value)
 }
 points.Set(0,PLATFORM.Location());# current position as start,children should have inserted this, but this line is for safety

 WsfRoute newRoute =WsfRoute();
 for(int ii=0;ii<points.Size();ii=ii+1)
 {
 newRoute.Append(points.Get(ii),450.0);
 }

 if((newRoute.Size()>0)&&(newRoute.IsValid()))
 {
 PLATFORM.FollowRoute(newRoute);
 }
 }
 end_Map_To_Action
Children
 Behavior SwarmNormalize
end_Children
 end_processor
end_platform_type

2
209

 processor SwarmVector UBFBehavior
 Children
 Behavior Alignment
 Behavior Cohesion
 Behavior Seperation
 end_Children
 Arbiter Fusion_Vote_GeoPoint
 end_processor

1

.

210

processor SwarmNormalize UBFBehavior
 Execute
 if(UBFBehavior.Get_Number_Of_Actions()>0)
 {
 UBFAction tempAction=UBFBehavior.Get_Action_By_Index(0);
 WsfGeoPoint tempPt=tempAction.Get_Geo_Point();
 Vec3 toPt=Vec3.Construct(PLATFORM.Latitude()-tempPt.Latitude(),
 PLATFORM.Longitude()-tempPt.Longitude(),
 0);
 toPt=toPt.Normal();
 WsfGeoPoint newPt=WsfGeoPoint.Construct(PLATFORM.Latitude()-toPt.X(),
 PLATFORM.Longitude()-toPt.Y(),
 PLATFORM.Altitude());
 UBFAction newAction = UBFAction.Create(tempAction.Get_Name(),
 tempAction.Get_Priority(),
 tempAction.Get_Vote(),
 newPt);
 newAction.Set_Int(tempAction.Get_Int());
 if(UBFBehavior.Delete_Action_By_Name(tempAction.Get_Name()))
 {
 UBFBehavior.Add_Action(newAction);
 }

 }
 end_Execute
 Children
 Behavior SwarmVector
 end_Children
end_processor

1

.

211

processor Alignment UBFBehavior
#This behavior passes up name and tracklist entry index if an enemy was detected
#Dependancy: parent platform is able to detect tracks
#INPUT: all children input will be passed forward
#OUTPUT: UBFActions with
Name || Enemy
Priority || 2
Track || The enemy track

#inspired from https://gamedevelopment.tutsplus.com/tutorials/3-simple-rules-of-
#flocking-behaviors-alignment-cohesion-and-separation--gamedev-3444
 Execute
 Vec3 ff =Vec3.Construct(0,0,0);
 int neighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);
 ff=Vec3.Add(ff,tempTrack.VelocityNED());
 neighborCount=neighborCount+1;
 }
 if(neighborCount==0)
 {
 return;
 }
 ff.Set(ff.X()/neighborCount,ff.Y()/neighborCount,0);
 ff=ff.Normal();
 WsfGeoPoint ptRelativePlatformDirectionOfTrackVelocityVector =
 WsfGeoPoint.Construct(
 PLATFORM.Latitude()+ff.X(),
 PLATFORM.Longitude()+ff.Y(),
 0);
 UBFBehavior.Add_Action(UBFAction.Create("Route",1,1,
 ptRelativePlatformDirectionOfTrackVelocityVector));
 end_Execute
end_processor

1

.

212

processor Cohesion UBFBehavior
#This behavior passes up name and tracklist entry index if an enemy was detected
#Dependancy: parent platform is able to detect tracks
#INPUT: all children input will be passed forward
#OUTPUT: UBFActions with
Name || Enemy
Priority || 2
Track || The enemy track

#inspired from https://gamedevelopment.tutsplus.com/tutorials/3-simple-rules
#-of-flocking-behaviors-alignment-cohesion-and-separation--gamedev-3444
 Execute
 Vec3 ff =Vec3.Construct(0,0,0);
 int neighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);
 ff=Vec3.Add(ff,Vec3.Construct(
 tempTrack.Latitude(),tempTrack.Longitude(),0));
 neighborCount=neighborCount+1;
 }
 if(neighborCount==0)
 {
 return;
 }
 ff.Set(ff.X()/neighborCount,ff.Y()/neighborCount,0);
 ff.Set(ff.X()-PLATFORM.Latitude(),ff.Y()-PLATFORM.Longitude(),0);
 ff=ff.Normal();
 WsfGeoPoint ptRelativePlatformDirectionOfTracksCenterOfMass =
 WsfGeoPoint.Construct(
 PLATFORM.Latitude()+ff.X(),
 PLATFORM.Longitude()+ff.Y(),
 0);
 UBFBehavior.Add_Action(UBFAction.Create("Route",1,1,
 ptRelativePlatformDirectionOfTracksCenterOfMass));
 end_Execute
end_processor

1

.

213

processor Seperation UBFBehavior
#This behavior passes up name and tracklist entry index if an
enemy was detected
#Dependancy: parent platform is able to detect tracks
#INPUT: all children input will be passed forward
#OUTPUT: UBFActions with
Name || Enemy
Priority || 2
Track || The enemy track

#inspired from https://gamedevelopment.tutsplus.com/tutorials/
#3-simple-rules-of-flocking-behaviors-alignment-cohesion-and-
#separation--gamedev-3444
 Execute
 Vec3 ff =Vec3.Construct(0,0,0);
 int neighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);

 if(tempTrack.GroundRangeTo(PLATFORM)<50000)
 {
 writeln(PLATFORM.Name()+" "+tempTrack.TargetName()+" "+
 (string)tempTrack.GroundRangeTo(PLATFORM));

 ff=Vec3.Add(ff,Vec3.Construct(tempTrack.Latitude(),
 tempTrack.Longitude(),0));
 ff=Vec3.Add(ff,Vec3.Construct(-1*PLATFORM.Latitude(),
 -1*PLATFORM.Longitude(),0));
 neighborCount=neighborCount+1;
 }
 }
 if(neighborCount==0)
 {
 return;
 }
 ff.Set(ff.X()/neighborCount,ff.Y()/neighborCount,0);
 ff.Set(-1*ff.X(),-1*ff.Y(),0);
 ff=ff.Normal();
 WsfGeoPoint ptAwayFromAllNeighorbors = WsfGeoPoint.Construct(
 PLATFORM.Latitude()+ff.X(),
 PLATFORM.Longitude()+ff.Y(),
 0);
 UBFBehavior.Add_Action(UBFAction.Create("Route",1,2,
 ptAwayFromAllNeighorbors));
 end_Execute
end_processor

1

.

214

2
215

2.4 Behaviors for Combined Scenario

The platforms are omitted as well as various behaviors because they do not sub-

stantially change from the previous examples.

216

behavior FlyAtPointBT_Combined
 script_variables
 bool home=false;
 end_script_variables
 precondition

 return true;
 end_precondition
 execute
 WsfGeoPoint goalPoint =WsfGeoPoint.Construct(30,-79,10668);

 //Weighting system
 double separationWeight=2, cohesionWeight=1, alignmentWeight=1,goalWeight=2
 totalWeight=separationWeight+cohesionWeight+alignmentWeight+goalWeight;

 //Cohesion code
 Vec3 cohesionVec =Vec3.Construct(0,0,0);
 int cohesionNeighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);
 cohesionVec=Vec3.Add(cohesionVec,Vec3.Construct(
 tempTrack.Latitude(),tempTrack.Longitude(),0));
 cohesionNeighborCount=cohesionNeighborCount+1;
 }
 if(cohesionNeighborCount==0)
 {
 cohesionWeight=0;
 cohesionNeighborCount=1;
 }
 cohesionVec.Set(cohesionVec.X()/cohesionNeighborCount,cohesionVec.Y()/cohesionNeighborCount
 cohesionVec.Set(-cohesionVec.X()+PLATFORM.Latitude(),-cohesionVec.Y()+PLATFORM
 cohesionVec=cohesionVec.Normal();

 //Separation Code
 Vec3 separationVec =Vec3.Construct(0,0,0);
 int separationNeighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);

 if(tempTrack.GroundRangeTo(PLATFORM)<50000)
 {
 # writeln(PLATFORM.Name()+" "+tempTrack.TargetName()+" "+
 # (string)tempTrack.GroundRangeTo(PLATFORM));

1

.

217

 separationVec=Vec3.Add(separationVec,Vec3.Construct(tempTrack.Latitude(),
 tempTrack.Longitude(),0));

 separationNeighborCount=separationNeighborCount+1;
 }
 }
 if(separationNeighborCount==0)
 {
 separationWeight=0;
 separationNeighborCount=1;
 }
 separationVec.Set(separationVec.X()/separationNeighborCount,separationVec.Y()/separationNeighborCount,0);
 separationVec.Set(separationVec.X()-PLATFORM.Latitude(),separationVec.Y()-PLATFORM.Longitude(),0);
 separationVec=separationVec.Normal();

 //Alignment Code
 Vec3 alignmentVec =Vec3.Construct(0,0,0);
 int neighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);
 alignmentVec=Vec3.Add(alignmentVec,tempTrack.VelocityNED());
 neighborCount=neighborCount+1;
 }
 if(neighborCount==0)
 {
 alignmentWeight=0;
 neighborCount=1;
 }
 alignmentVec.Set(-alignmentVec.X()/neighborCount,-alignmentVec.Y()/neighborCount,0);
 alignmentVec=alignmentVec.Normal();

 //Need custom code to merge them all now. Inspired from the fusion vector
 Vec3 goalVec = Vec3.Construct(PLATFORM.Latitude()-goalPoint.Latitude(),PLATFORM.Longitude()-goalPoint.Longitude(),0);
 goalVec=goalVec.Normal();
 double fusedLat=0, fusedLong=0, fusedAlt=0;
 fusedLat=alignmentVec.X()*alignmentWeight/totalWeight+cohesionVec.X()*cohesionWeight/totalWeight+
 separationVec.X()*separationWeight/totalWeight + goalVec.X()*goalWeight/totalWeight;
 fusedLong=alignmentVec.Y()*alignmentWeight/totalWeight+cohesionVec.Y()*cohesionWeight/totalWeight+
 separationVec.Y()*separationWeight/totalWeight + goalVec.Y()*goalWeight/totalWeight;
 fusedAlt=alignmentVec.Z()*alignmentWeight/totalWeight+cohesionVec.Z()*cohesionWeight/totalWeight+
 separationVec.Z()*separationWeight/totalWeight + goalVec.Z()*goalWeight/totalWeight;
 goalVec.SetX(fusedLat);
 goalVec.SetY(fusedLong);
 goalVec.SetZ(0);

2
218

 //Normalize the output to the platforms current position
 goalVec=goalVec.Normal();
 WsfGeoPoint newPt=WsfGeoPoint.Construct(PLATFORM.Latitude()-goalVec.X(),
 PLATFORM.Longitude()-goalVec.Y(),
 PLATFORM.Altitude());

 PLATFORM.GoToSpeed(450.0);
 WsfRoute newRoute =WsfRoute();
 newRoute.Append(newPt,PLATFORM.Altitude());
 PLATFORM.FollowRoute(newRoute);
 end_execute
end_behavior

3
219

behavior FlyAwayFromObstacleBT_Combined
 precondition
 WsfGeoPoint obstacle = WsfGeoPoint.Construct(30,-80,1000);
 if(obstacle.GroundRangeTo(PLATFORM.Location())<25000)
 {
 return true;
 }
 return false;
 end_precondition
 execute
 WsfGeoPoint choice;
 double currentHeading= PLATFORM.Heading();
 double choiceDist=-1;
 WsfGeoPoint obstacle = WsfGeoPoint.Construct(30,-80,10668);
 WsfGeoPoint platPoint= PLATFORM.Location();
WsfGeoPoint currentDirectionPt=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading)/7,
 platPoint.Altitude()),
turnDirRight=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading-90)/
 platPoint.Longitude()+MATH.Sin(currentHeading-90)
 platPoint.Altitude()),
turnDirLeft=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading+90)/7
 platPoint.Longitude()+MATH.Sin(currentHeading+90)/
 platPoint.Altitude());
 double obstacleTo1dist= obstacle.GroundRangeTo(currentDirectionPt),
 obstacleTo2dist= obstacle.GroundRangeTo(turnDirRight),
 obstacleTo3dist= obstacle.GroundRangeTo(turnDirLeft);
 if(obstacleTo1dist>=obstacleTo2dist && obstacleTo1dist >= obstacleTo3dist
 {
 choiceDist=obstacleTo1dist;
 choice=currentDirectionPt;
 }
 else if(obstacleTo2dist>=obstacleTo1dist && obstacleTo2dist >= obstacleTo3dist
 {
 choiceDist=obstacleTo2dist;
 choice=turnDirRight;
 }
 else
 {
 choiceDist=obstacleTo3dist;
 choice=turnDirLeft;

1

.

220

 writeln("righting");

 }

 Vec3 temp = Vec3.Construct(choice.Latitude(), choice.Longitude(),0);
 temp=temp.Normal();
 Vec3 avoidVec = Vec3.Construct(PLATFORM.Latitude()-choice.Latitude(),PLATFORM.Longitude()-choice.Longitude(),0);
 avoidVec=avoidVec.Normal();

 //weighting system
 double separationWeight=2, cohesionWeight=2, alignmentWeight=2,avoidWeight=1, totalWeight;
 totalWeight=separationWeight+cohesionWeight+alignmentWeight+avoidWeight;

 //Cohesion code
 Vec3 cohesionVec =Vec3.Construct(0,0,0);
 int cohesionNeighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);
 cohesionVec=Vec3.Add(cohesionVec,Vec3.Construct(
 tempTrack.Latitude(),tempTrack.Longitude(),0));
 cohesionNeighborCount=cohesionNeighborCount+1;
 }
 if(cohesionNeighborCount==0)
 {
 cohesionWeight=0;
 cohesionNeighborCount=1;
 }
 cohesionVec.Set(cohesionVec.X()/cohesionNeighborCount,cohesionVec.Y()/cohesionNeighborCount,0);
 cohesionVec.Set(-cohesionVec.X()+PLATFORM.Latitude(),-cohesionVec.Y()+PLATFORM.Longitude(),0);
 cohesionVec=cohesionVec.Normal();

 //Separation Code
 Vec3 separationVec =Vec3.Construct(0,0,0);
 int separationNeighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);

 if(tempTrack.GroundRangeTo(PLATFORM)<50000)
 {
 # writeln(PLATFORM.Name()+" "+tempTrack.TargetName()+" "+
 # (string)tempTrack.GroundRangeTo(PLATFORM));

 separationVec=Vec3.Add(separationVec,Vec3.Construct(tempTrack.Latitude(),

2
221

 tempTrack.Longitude(),0));

 separationNeighborCount=separationNeighborCount+1;
 }
 }
 if(separationNeighborCount==0)
 {
 separationWeight=0;
 separationNeighborCount=1;
 }
 separationVec.Set(separationVec.X()/separationNeighborCount,separationVec.Y()/separationNeighborCount,0);
 separationVec.Set(separationVec.X()-PLATFORM.Latitude(),separationVec.Y()-PLATFORM.Longitude(),0);
 separationVec=separationVec.Normal();

 //Alignment Code
 Vec3 alignmentVec =Vec3.Construct(0,0,0);
 int neighborCount=0;
 for(int i=0;i<PLATFORM.MasterTrackList().Count();i=i+1)
 {
 WsfLocalTrack tempTrack= PLATFORM.MasterTrackList().Entry(i);
 alignmentVec=Vec3.Add(alignmentVec,tempTrack.VelocityNED());
 neighborCount=neighborCount+1;
 }
 if(neighborCount==0)
 {
 alignmentWeight=0;
 neighborCount=1;
 }
 alignmentVec.Set(-alignmentVec.X()/neighborCount,-alignmentVec.Y()/neighborCount,0);

 alignmentVec=alignmentVec.Normal();

 //Need custom code to merge them all now. Inspired from the fusion vector

 double fusedLat=0, fusedLong=0, fusedAlt=0;
 fusedLat=alignmentVec.X()*alignmentWeight/totalWeight+cohesionVec.X()*cohesionWeight/totalWeight+
 separationVec.X()*separationWeight/totalWeight + avoidVec.X()*avoidWeight/totalWeight;
 fusedLong=alignmentVec.Y()*alignmentWeight/totalWeight+cohesionVec.Y()*cohesionWeight/totalWeight+
 separationVec.Y()*separationWeight/totalWeight + avoidVec.Y()*avoidWeight/totalWeight;
 fusedAlt=alignmentVec.Z()*alignmentWeight/totalWeight+cohesionVec.Z()*cohesionWeight/totalWeight+
 separationVec.Z()*separationWeight/totalWeight + avoidVec.Z()*avoidWeight/totalWeight;
 avoidVec.SetX(fusedLat);
 avoidVec.SetY(fusedLong);
 avoidVec.SetZ(0);

3
222

 //Normalize the output to the platforms current position
 avoidVec=avoidVec.Normal();
 WsfGeoPoint newPt=WsfGeoPoint.Construct(PLATFORM.Latitude()-avoidVec.X(),
 PLATFORM.Longitude()-avoidVec.Y(),
 PLATFORM.Altitude());

 PLATFORM.GoToSpeed(450.0);
 PLATFORM.GoToLocation(newPt);
 end_execute
end_behavior

4
223

 processor CombineVector UBFBehavior
 Children
 Behavior Alignment
 Behavior Cohesion
 Behavior Seperation
 Behavior IncreaseVote
 end_Children
 Arbiter Fusion_Vote_GeoPoint
 end_processor

1

.

224

processor IncreaseVote UBFBehavior
 Execute
 if(UBFBehavior.Get_Number_Of_Actions()<=0)
 {
 return;
 }
 for(int i=0;i<UBFBehavior.Get_Number_Of_Actions();i=i+1)
 {
 UBFBehavior.Get_Action_By_Index(i).Set_Vote(
 UBFBehavior.Get_Action_By_Index(i).Get_Vote()*2);
 writeln(" " + (string)UBFBehavior.Get_Action_By_Index(i).Get_Vote
 }
 end_Execute
 Children
 Behavior FlyAtPoint
 Behavior FlyAwayFromObstacle2
 end_Children
end_processor

1

.

225

#This behavior is meant to show behavioral emergence
processor FlyAwayFromObstacle2 UBFBehavior
 Execute
 WsfGeoPoint choice;
 double currentHeading= PLATFORM.Heading();
 double choiceDist=-1;
 WsfGeoPoint obstacle = WsfGeoPoint.Construct(30,-80,1000);
 WsfGeoPoint platPoint= PLATFORM.Location();
 WsfGeoPoint currentDirectionPt=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading)/7,
 platPoint.Altitude()),
turnDirRight=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading-90)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading-90)/7,
 platPoint.Altitude()),
turnDirLeft=
 WsfGeoPoint.Construct(platPoint.Latitude()+MATH.Cos(currentHeading+90)/7,
 platPoint.Longitude()+MATH.Sin(currentHeading+90)/7,
 platPoint.Altitude());
 double obstacleTo1dist= obstacle.GroundRangeTo(currentDirectionPt),
 obstacleTo2dist= obstacle.GroundRangeTo(turnDirRight),
 obstacleTo3dist= obstacle.GroundRangeTo(turnDirLeft);
 if(obstacleTo1dist>=obstacleTo2dist &&
 obstacleTo1dist >= obstacleTo3dist)
 {
 choiceDist=obstacleTo1dist;
 choice=currentDirectionPt;
 }
 else if(obstacleTo2dist>=obstacleTo1dist &&
 obstacleTo2dist >= obstacleTo3dist)
 {
 choiceDist=obstacleTo2dist;
 choice=turnDirRight;
 }
 else
 {
 choiceDist=obstacleTo3dist;
 choice=turnDirLeft;
 }
 double vote=70000/choiceDist;
 vote=vote*vote;
 writeln("Vote "+(string)vote + " " + (string)choiceDist);
 UBFAction destinationAction = UBFAction.Create("Route",1,vote, choice);
 destinationAction.Set_Int(1);#this is the index of the point it should fly to
 UBFBehavior.Add_Action(destinationAction);

1

.

226

 end_Execute
end_processor

2
227

2.5 Arbiter Scripts Used

This section contains the arbiter scripts that were used.

228

processor Fusion_Vote_GeoPoint UBFArbiter
#This arbiter passes up an Action with the GeoPoint's alt, lat, and long values
#combined based on the vote value
#The name and priority fields of the last Action object are reused,
#the other fields are discarded
#Dependancy: none
#INPUT: Will not respond without valid vote, >0, and valid geopoint, !=null.
#OUTPUT: Single action with fused GeoPoint field according to vote values
 Execute
 int totalVote=0;
 int numofVotes=0;
 string actionName="";
 int actionPriority=-1;
 #Find highest vote number
 if(UBFArbiter.Get_Number_Of_Actions()==0)
 {
 return;
 }
 double fusedLat=0, fusedLong=0, fusedAlt=0;

 for(int i=0;i<UBFArbiter.Get_Number_Of_Actions();i=i+1)
 {
 double tempVote=UBFArbiter.Get_Action_By_Index(i).Get_Vote();
 WsfGeoPoint tempPoint = UBFArbiter.Get_Action_By_Index(i).Get_Geo_Point();
 if(tempVote>0 && tempPoint.IsValid())
 {
 totalVote=totalVote+tempVote;
 actionName=UBFArbiter.Get_Action_By_Index(i).Get_Name();
 actionPriority=UBFArbiter.Get_Action_By_Index(i).Get_Priority();
 numofVotes=numofVotes+1;
 fusedLat=fusedLat + tempPoint.Latitude()* tempVote;
 fusedLong=fusedLong + tempPoint.Longitude()* tempVote;
 fusedAlt=fusedAlt + tempPoint.Altitude()* tempVote;
 }
 }

 if(totalVote<=0)
 {
 return;#no behaviors have valid votes
 #also returns if all votes were 0 since that
 #means no confidence in that action!
 }

 #normalize for the total vote value
 fusedLat=fusedLat/totalVote;
 fusedLong=fusedLong/totalVote;
 fusedAlt=fusedAlt/totalVote;

1

.

229

 WsfGeoPoint newpoint=WsfGeoPoint.Construct(fusedLat,fusedLong,fusedAlt);
 totalVote=totalVote/numofVotes;
 UBFAction newAction = UBFAction.Create(actionName,
 actionPriority, totalVote, newpoint);
 newAction.Set_Int(1);
 UBFArbiter.Add_Action(newAction);
 end_Execute
end_processor

2
230

processor CopyAllActionsUp UBFArbiter
 Execute
 UBFAction ab = UBFArbiter.Get_Next_Action();
 while(ab!=null)
 {
 UBFArbiter.Add_Action(ab);
 ab = UBFArbiter.Get_Next_Action();
 }
 end_Execute
end_processor

1

.

231

processor UBF_A_CheckTrackQualityWeaponsPending UBFArbiter
 Execute
 if(UBFArbiter.Get_Number_Of_Actions()==0)
 return;

 UBFActionList aList = UBFArbiter.Get_Actions_By_Exact_Name("Target");
 UBFAction tempAction =UBFArbiter.Get_Next_Action();
 while(tempAction!=null)
 {
 WsfTrackId tempID=WsfTrackId.Construct(tempAction.Get_String(),
 tempAction.Get_Int());
 if(tempID.IsNull())
 {
 tempAction =UBFArbiter.Get_Next_Action();
 return;
 }
 WsfLocalTrack targetTrack = PLATFORM.MasterTrackList().FindTrack(tempID);
 if(!targetTrack.IsValid())
 {
 tempAction =UBFArbiter.Get_Next_Action();
 return;
 }
 writeln_d (" targetTrack.TrackQuality == ", targetTrack.TrackQuality());
 if (targetTrack.TrackQuality() < 0.49)
 {
 writeln_d(" FAIL: track quality not good enough to fire on target");
 tempAction =UBFArbiter.Get_Next_Action();
 continue;
 }

 if ((PLATFORM.WeaponsPendingFor(tempID) +
 PLATFORM.WeaponsActiveFor(tempID)) > 0)
 {
 writeln("already have weapons assigned for target track");
 tempAction =UBFArbiter.Get_Next_Action();
 continue;
 }
else
{
writeln("no weapons active for target "+tempID.Name());
}
 UBFArbiter.Add_Action(tempAction);
 #tempAction= aList.Get_Next_Action();#currently broken
 tempAction =UBFArbiter.Get_Next_Action();
 }
 end_Execute

1

.

232

end_processor

2
233

processor UBF_A_AssignWeaponFromFirstTarget UBFArbiter
 Execute
 // don't launch unless within this percent of Rmax
 double DefaultPercentRangeMax = 0.80;
 // don't launch unless beyond this percent of Rmin
 double DefaultPercentRangeMin = 1.20;
 Map<string, struct> gWeaponDefs = Map<string, struct>();

 gWeaponDefs["MEDIUM_RANGE_MISSILE"] = struct.New("WeaponData");
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->type = "MEDIUM_RANGE_MISSILE";
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->rangeMin = 50; // (meters)
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->rangeMax = 111120; // ~60 nm (meters)
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->averageSpeed = 1657.283; //mach 5 (m/s)
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->maxTimeFlight = 67.05; //for 60 nm range (seconds)
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->numActiveMax = 2;
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->domainAir = true;
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->domainLand = false;
 gWeaponDefs["MEDIUM_RANGE_MISSILE"]->maxFiringAngle = 45.0;

 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"] = struct.New("WeaponData");
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->type = "MEDIUM_RANGE_RADAR_MISSILE";
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->rangeMin = 50; // (meters)
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->rangeMax = 111120; // ~60 nm (meters)
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->averageSpeed = 1657.283; //mach 5 (m/s)
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->maxTimeFlight = 67.05; //for 60 nm range (seconds)
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->numActiveMax = 2;
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->domainAir = true;
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->domainLand = false;
 gWeaponDefs["MEDIUM_RANGE_RADAR_MISSILE"]->maxFiringAngle = 45.0;

 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"] = struct.New("WeaponData");
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->type = "SIMPLE_MRM_WEAPON_LC";
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->rangeMin = 50; // (meters)
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->rangeMax = 111120; // ~60 nm (meters)
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->averageSpeed = 1657.283; //mach 5 (m/s)
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->maxTimeFlight = 67.05; //for 60 nm range (seconds)
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->numActiveMax = 2;
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->domainAir = true;
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->domainLand = false;
 gWeaponDefs["SIMPLE_MRM_WEAPON_LC"]->maxFiringAngle = 45.0;

 if(UBFArbiter.Get_Number_Of_Actions()==0)
 return;

 UBFActionList aList = UBFArbiter.Get_Actions_By_Exact_Name("Weapon");

1

.

234

 UBFAction tempAction = UBFArbiter.Get_Next_Action();

 while(tempAction!=null)
 {
 #first weapon found will be use
 WsfTrackId tempID=WsfTrackId.Construct(tempAction.Get_String(),
 tempAction.Get_Int());
 WsfLocalTrack targetTrack = PLATFORM.MasterTrackList().FindTrack(tempID);

 WsfWeapon weapon;
 bool weaponUsable = false;
 int weaponIndex=-1;
 #Check the set of weapons on the platform for one
 #that is compatible with the target
 for (int i=0; i < PLATFORM.WeaponCount(); i+=1)
 {
 weaponIndex=i;
 weapon = PLATFORM.WeaponEntry(i);
 //WeaponCapableAvailableAgainstThreat(weapon, targetTrack) call
 bool WCAAT =false;
 writeln_d("checking if weapon ", weapon.Name(), " is usable.");
 if (weapon.IsNull() || !weapon.IsValid() ||
 targetTrack.IsNull() || !targetTrack.IsValid())
 {
 writeln_d("weapon or track is not valid!");
 continue;
 }
 if ((weapon.QuantityRemaining()-
 weapon.WeaponsPendingFor(WsfTrackId())) <= 0)
 {
 writeln_d("no unassigned weapons left to fire!");
 continue;
 }

 //check manually input user data first
 struct weaponData;
 if (gWeaponDefs.Exists(weapon.Type()))
 {
 weaponData= gWeaponDefs.Get(weapon.Type());
 }
 else
 {
 #writeln("TYPE: "+ weapon.Type());
 continue;
 weaponData= struct.New("WeaponData");

2
235

 }
 if (weaponData->type == weapon.Type())
 {
 if ((targetTrack.AirDomain() && !weaponData->domainAir) ||
 (targetTrack.LandDomain() && !weaponData->domainLand))
 {
 #writeln("weapon not capable against target domain!");
 continue;
 }
 }
 else
 {
 writeln("could not find weapon type ", weapon.Type() ,
 " in weapon database; query returned type ", weaponData->type);
 //check if it has a launch computer of the necessary type
 WsfLaunchComputer lcPtr = weapon.LaunchComputer();
 if (lcPtr.IsValid())
 {
 if (targetTrack.AirDomain() &&
 lcPtr.IsA_TypeOf("WSF_AIR_TO_AIR_LAUNCH_COMPUTER"))
 {
 }
 else if (targetTrack.LandDomain() &&
 lcPtr.IsA_TypeOf("WSF_ATG_LAUNCH_COMPUTER"))
 {
 }
 else{
 continue;
 }
 }
 else
 {
 #writeln("nor could an applicable launch computer be found!");
 continue; //dont have weapon data
 }
 }
 WsfLaunchComputer lcPtr = weapon.LaunchComputer();

 if (lcPtr.IsValid() &&
 lcPtr.IsA_TypeOf("WSF_AIR_TO_AIR_LAUNCH_COMPUTER"))
 {
 #writeln(" using air-to-air launch computer");

 Array<double> returnedValues = lcPtr.LookupResult(targetTrack);

 // Now have to consider whether we have enough

3
236

 #information to continue with a weapon shot:
 double theRmax = returnedValues[0]; //"Rmax";
 double theRmaxTOF = returnedValues[1]; //"RmaxTOF";
 double theRne = returnedValues[2]; //"Rne";
 double theRneTOF = returnedValues[3]; //"RneTOF";
 double theRmin = returnedValues[4]; //"Rmin";
 double theRminTOF = returnedValues[5]; //"RminTOF";
 double range = targetTrack.GroundRangeTo(PLATFORM);

 // Check for track range less than
 #Rmin * scaleFactor, if not, return.
 // But do not check for min range constraint at
 #all unless we are likely to be needing it.
 if (range < 5000)
 {
 if (theRmin == -1.0)
 {
 continue;
 }
 double RminConstraint = theRmin * DefaultPercentRangeMin;
 if (range < RminConstraint)
 {
 continue;
 }
 }

 // Check for track range less than Rne,
 #if so, FORCE a weapon fire.
 bool forceWeaponFire = false;
 if (range < theRne)
 {
 ## writeln(" Engagement is forcing a
 #weapon fire due to inside Rne.");
 # writeln(" Range versus Rne constraint
 # = ", range, ", ", theRne);
 weaponUsable=true;
 break;
 forceWeaponFire = true;
 }

 if (forceWeaponFire == false)
 {
 theRmax = (theRmax + theRne)/2.0;
 //for highly maneuverable fighter targets
 // Check for track range less than k * Rmax, if not, return.
 if (theRmax == -1.0)
 {

4
237

 # writeln(" Engagement did not shoot
 #since Rmax was not valid.");
 continue;
 }
 //double RmaxConstraint = theRmax * DefaultPercentRangeMax;
 if (range > (theRmax * DefaultPercentRangeMax))
 {
 # writeln(" Engagement did not shoot
 # since outside the k * Rmax constraint distance.");
 # writeln(" Range versus Rmax constraint
 #= ", range, ", ", (theRmax * DefaultPercentRangeMax));
 continue;
 }

 }

 # writeln(" Engagement meets constraints for
 #firing a weapon (continue).");
 weaponUsable=true;
 break;
 }
 else if (lcPtr.IsValid() &&
 lcPtr.IsA_TypeOf("WSF_ATG_LAUNCH_COMPUTER"))
 {
 writeln_d(" using air-to-ground launch computer");
 if (lcPtr.CanIntercept(targetTrack))
 {
 //intercept works, this weapon is a candidate
 weaponUsable=true;
 #writeln("weaponusable ------------SET");
 break;
 }
 else
 {
 continue; #continue for loop (int i=0; i <
 #PLATFORM.WeaponCount(); i+=1)
 }
 }
 else
 {
 struct weaponData1;
 if (gWeaponDefs.Exists(weapon.Type()))
 {
 weaponData1= gWeaponDefs.Get(weapon.Type());
 }
 else

5
238

 {
 weaponData1= struct.New("WeaponData");
 }
 writeln_d(" using input WeaponData struct values");

 double effectiveRange = (PLATFORM.GroundRangeTo(targetTrack)
 PLATFORM.RelativeAltitudeOf(targetTrack)) +
 PLATFORM.ClosingSpeedOf(targetTrack) * 15; //look ahead 15 seconds

 double absRelativeBearing =
 MATH.Fabs(PLATFORM.RelativeBearingTo(targetTrack));

 if ((weaponData1->rangeMin *
 DefaultPercentRangeMin) > effectiveRange)
 {
 writeln_d(" target too close");
 continue;
 }
 if (absRelativeBearing > weaponData1->maxFiringAngle)
 {
 writeln_d(" target firing angle too large");
 continue;
 }
 if (weaponData1->rangeMax *
 DefaultPercentRangeMax < effectiveRange)
 {
 writeln_d(" target too far away");
 continue;
 }

 double range = PLATFORM.SlantRangeTo(targetTrack);
 double relBearing =
 targetTrack.RelativeBearingTo(PLATFORM);
 if (relBearing > 90.0)
 {
 if (targetTrack.Speed() > weaponData1->averageSpeed)
 {
 continue;
 }
 double speedDiff = weaponData1->averageSpeed -
 targetTrack.Speed();
 if ((range/speedDiff) > weaponData1->maxTimeFlight)
 {
 continue;
 }
 }
 }

6
239

 //END-INRANGETOFIRE
 weaponUsable=true;
 break;#if it made it this far it is usable,
 #continues above will skip this break
 }#End for loop (int i=0; i < PLATFORM.WeaponCount(); i+=1)

 #then no usable weapon was found so try the next target
 if (weaponUsable == false)
 {
 writeln_d("no usable weapon found!");
 tempAction= UBFArbiter.Get_Next_Action();
 continue;#continue While loop on actions
 }

 if (weapon.IsTurnedOn())
 {
 #launched = weapon.Fire(targetTrack);
 UBFAction newAction = UBFAction.Create(
 "Weapon",2, 1,tempAction.Get_String());
 newAction.Set_Int(tempAction.Get_Int());
 newAction.Set_Double(weaponIndex);
 UBFArbiter.Add_Action(newAction);

 break;#break the while loop because you suggested one action and target
 }

 tempAction= UBFArbiter.Get_Next_Action();
 }#end while loop

 end_Execute

end_processor

7
240

2.6 Grammar File

This grammar file is used to provide formatting and highlighting to the AF-

SIM IDE for the new tags. It does not include the new commands because those

are automatically created by the AFSIM software. It could be improved to allow

for auto-complete of UBFArbiter and UBFBehavior names. It is on the following

page.

241

C:\Users\ludam\Desktop\thx USB 18 Aug 2016\wrkngCpy\wsf_build\grammar\JeffBehaviors.ag Monday, January 30, 2017 1:07 AM

(rule child
{
 Behavior <string>
})
(rule children_block
{
 Children <child>* end_Children
})

(struct UBFBehavior :symbol (type processorType UBFBehavior)
 :base_type Processor
 (script-var WsfPlatform PLATFORM)
 (script-var WsfProcessor PROCESSOR :this 1)
 (script-var WsfMessage MESSAGE)
 {
 update_interval <real> <time-unit>
 | Execute <ScriptBlock>* end_Execute
 | Map_To_Action <ScriptBlock>* end_Map_To_Action
 | Pre_Condition <ScriptBlock>* end_Pre_Condition
 | <children_block>
 | Arbiter <string>
 | <script-variables-block>
 })

(struct UBFArbiter :symbol (type processorType UBFArbiter)
 :base_type Processor
 (script-var WsfPlatform PLATFORM)
 (script-var WsfProcessor PROCESSOR :this 1)
 (script-var WsfMessage MESSAGE)
 {
 Execute <ScriptBlock>* end_Execute
 })

-1-

.

242

Bibliography

1. R. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal

on Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

2. E. Winsberg, “Simulated experiments: Methodology for a virtual world,” Philos-

ophy of science, vol. 70, no. 1, pp. 105–125, 2003.

3. J. Zeh, B. Birkmire, P. D. Clive, A. W. Krisby, J. E. Marjamaa, L. B. Miklos,

M. J. Moss, and S. P. Yallaly, “Advanced Framework for Simulation, Integratin,

and Modeling(AFSIM) Version 1.8 OVERVIEW Oct 2014,” 2014.

4. T. Vu, “Behavior Programming Language and Automated Code Generation for

Agent Behavior Control,” 2004.

5. M. Colledanchise and P. Ögren, “How behavior trees modularize robustness and

safety in hybrid systems,” in 2014 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems. IEEE, 2014, pp. 1482–1488.

6. A. J. Kamrud, D. D. Hodson, G. L. Peterson, and B. G. Woolley, “Unified be-

havior framework in discrete event simulation systems,” The Journal of Defense

Modeling and Simulation, 2015.

7. J. B. J. Ziegler and G. Peterson, “An introduction to behavior-based robotics,”

2017. [Online]. Available: http://modelai.gettysburg.edu

8. A. Topalidou-Kyniazopoulou, N. I. Spanoudakis, and M. G. Lagoudakis, “A case

tool for robot behavior development,” in RoboCup 2012: Robot Soccer World Cup

XVI. Springer, 2013, pp. 225–236.

243

http://modelai.gettysburg.edu

9. B. G. Woolley and G. L. Peterson, “Unified behavior framework for reactive robot

control,” Journal of Intelligent and Robotic Systems: Theory and Applications,

vol. 55, no. 2-3, pp. 155–176, 2009.

10. J. Goldstein, “Emergence as a construct: History and issues,” Emergence, vol. 1,

no. 1, pp. 49–72, 1999.

11. V. Pemmaraju, “3 simple rules of flocking behaviors: Alignment, cohe-

sion, and separation,” https://gamedevelopment.tutsplus.com/tutorials/

3-simple-rules-of-flocking-behaviors-alignment-cohesion-and-separation--gamedev-3444,

2013, accessed: 23-Jan-2017.

12. E. Gat, “On three-layer architectures,” Artificial intelligence and mobile robots,

vol. 195, 1998.

13. J. H. Connell, “A behavior-based arm controller,” IEEE Transactions on Robotics

and Automation, vol. 5, no. 6, pp. 784–791, 1989.

14. R. C. Arkin, “Motor schema based navigation for, a mobile robot: An approach

to programming by behavior,” pp. 264–271, 1987.

15. K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti, “The saphira architecture: A

design for autonomy,” Journal of experimental & theoretical artificial intelligence,

vol. 9, no. 2-3, pp. 215–235, 1997.

16. K. L. Myers, “User guide for the procedural reasoning system,” SRI International

AI Center Technical Report. SRI International, Menlo Park, CA, 1997.

17. A. Skorkin, “Why developers never use state machines,” 2011, [Ac-

cessed 2-Jan-2017]. [Online]. Available: http://www.skorks.com/2011/09/

why-developers-never-use-state-machines/

244

https://gamedevelopment.tutsplus.com/tutorials/3-simple-rules-of-flocking-behaviors-alignment-cohesion-and-separation--gamedev-3444
https://gamedevelopment.tutsplus.com/tutorials/3-simple-rules-of-flocking-behaviors-alignment-cohesion-and-separation--gamedev-3444
http://www.skorks.com/2011/09/why-developers-never-use-state-machines/
http://www.skorks.com/2011/09/why-developers-never-use-state-machines/

18. C. Simpson, “Behavior trees for ai: How they work,” 2014. [Online].

Available: http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/

Behavior trees for AI How they work.php

19. J. Zeh and B. Birkmire, “Advanced framework for simulation, integration, and

modeling (afsim) version 1.8 overview,” Wright Patterson Air Force Base, OH:

Air Force Research Laboratory, Aerospace Systems, 2014.

20. B. G. Woolley, G. L. Peterson, and J. T. Kresge, “Real-time behavior-based robot

control,” Autonomous Robots, vol. 30, no. 3, pp. 233–242, 2011.

21. M. Mateas and A. Stern, “A behavior language for story-based believable agents,”

IEEE Intelligent Systems and Their Applications, vol. 17, no. 4, pp. 39–47, 2002.

22. A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a unified

behavior Trees framework for robot control,” Proceedings - IEEE International

Conference on Robotics and Automation, pp. 5420–5427, 2014.

23. R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of

theorem proving to problem solving,” Artificial intelligence, vol. 2, no. 3-4, pp.

189–208, 1971.

24. J. P. Duffy, “Dynamic behavior sequencing in a hybrid robot architecture,”

Master’s thesis, Air Force Institute of Technology, 2950 Hobson Way, Wright-

Patterson AFB, OH 45433, 2008.

25. M. Fowler, UML distilled: a brief guide to the standard object modeling language.

Addison-Wesley Professional, 2004.

245

http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2017 Master’s Thesis Sept 2015 — Mar 2017

Extending AFSIM with Behavioral Emergence

16 ENG224-24

Choate, Jeffrey, L, Capt USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-17-M-014

Air Force Research Laboratory
Aerospace Systems Directorate
Aerospace Vehicles Technology Assessment and Simulation Branch
2180 8th St., B145
WPAFB, OH 45433-7511
Email: brian.birkmire.1@us.af.mil Phone: 937-255-2441

AFRL/RQQD

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States

The Advanced Framework for Simulation, Integration, and Modeling (AFSIM) provides a capability to evaluate mission
level scenarios described in its scripting language. The AFSIM scripting language includes multiple intelligent agent
modeling techniques, none of which explicitly provide the ability to have behaviors emerge. Behavioral emergence occurs
when a system composed of many simple behaviors working together exhibits a complex pattern not directly attributable
to the simpler components. Without behavioral emergence an intelligent agent designer must explicitly write methods for
every combination of circumstances that their agent may encounter. A priori consideration of every possible configuration
of the world state is intractable. This problem can be solved by adding the Unified Behavior Framework (UBF) to
AFSIM which provides a means to explicitly control behavioral emergence. This thesis adds a unified behavior language
built on UBF to AFSIM’s scripting language and demonstrates behavioral emergence via a case study of these new
behaviors in AFSIM.

Unified Behavior Framework, Behavior Language, Advanced Framework for Simulation Integration and Modeling

U U U U 259

Dr. G. L. Peterson, AFIT/ENGC

(937) 255-3636, x4281; Gilbert.Peterson@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Thesis Objective
	Demonstrated Advancements
	Sponsor
	Contributions
	Results
	Assumptions and Terms
	Thesis Structure

	Intelligent Agent Architectures/Frameworks/Languages
	Behavior Component Definition for Comparison
	Robot Architectures
	Subsumption
	Colony
	Motor Schema
	Saphira/ARIA Architecture

	Agent Controllers
	Finite State Machines
	Behavior Trees
	AFSIM's Intelligent Agent Systems
	Unified Behavior Framework

	Planners and Other Behavior Languages
	A Behavior Language
	High Level Behavior Based Language
	Case Based Behavior Tool
	Unified Behavior Trees Framework for Robot Control
	STRIPS
	Dynamic Behavior Sequencing in UBF

	Summary of Intelligent Agent Commands and Concepts

	Unified Behavior Language in AFSIM
	Unified Behavior Framework in the Advanced Framework for Simulation, Integration, and Modeling
	UBF Class Structure
	UBF Data Flow Chart

	Mapping of Commands and Concepts to AFSIM Environment
	Manual pages for new AFSIM commands
	Tag Documentation

	Summary

	Experimental Implementation and Evaluation
	Behavior Tree Adapted scenario
	Translating the Individual Behaviors
	Discussion of BT translation to UBF tree

	Established interfaces
	Behavior Emergence tuning scenario
	Behavior Structures Implemented
	Comparison: UBF agent versus BT agent

	Emergent Behavior based Implementation
	Boids Scenario Behavior Emergence Discussion

	Combined Scenario
	Behavior Tree Modification
	UBF Tree Modification
	Modification Comparison

	Summary

	Results
	Scenario Results Summary
	Coverage of other Languages and Frameworks Concepts
	Platform Independent UBF Discussion
	Summary

	Conclusions
	Recommendations
	Future Work Discussion
	Conclusions.
	Significance
	Summary

	Implementation C++ Code
	Header Files
	InputTree.hpp
	UBFAction.hpp
	UBFActionList.hpp
	UBFArbiter.hpp
	UBFBehavior.hpp

	C++ Files
	UBFAction.cpp
	UBFActionList.cpp
	UBFArbiter.cpp
	UBFBehavior.cpp

	Scripts Implemented
	Platforms and Behaviors for Tutorial Scenario
	Striker Type with Map To Action
	Select Movement Behavior
	Pursue Target Behavior
	Go To Original Route Behavior
	Generate Targets From Tasks Behavior
	Add Weapons To Targets Behavior

	Platforms and Behaviors for Tuning Scenario
	Blue Aircraft
	Blue Aircraft Type
	Emergence Behavior
	Emergence Normalize Behavior
	Fly At Point Behavior
	Fly Away Behavior
	Behavior Tree Aircraft
	Behavior Tree Aircraft Type
	Behavior Tree Fly At Behavior
	Behavior Tree Fly Away Behavior

	Platforms and Behaviors for Swarm Scenario
	Blue Swarmers
	Blue Aircraft Swarmer Type
	Swarm Behavior
	Swarm Normalize Behavior
	Alignment Behavior
	Cohesion Behavior
	Separation Behavior

	Behaviors for Combined Scenario
	Fly At and Swarm BT Behavior
	Fly Away From Pt and Swarm BT Behavior
	Combining Vectors
	Increase Vote UBF Behavior
	Dynamic Voting UBF Fly Away Behavior

	Arbiter Scripts Used
	Fusion Vote GeoPoint Arbiter
	Copy All Actions Arbiter
	Check Track Quality Arbiter
	Assign Weapon From Target Arbiter

	Grammar File
	Grammar File

	Bibliography

